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In optimization and control, we strive for 
 

Computational Tractability  
 

and 
 

Scalability 
 
 

What makes a problem “easy”? 
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Different Flavors of Convexity 
•  Linear Programs (LPs) 
•  Second Order Cone Programs (SOCPs) 
•  Semi-definite Programs (SDPs) 

 
Different Reasonable Problem Sizes 

•  LPs: Millions of variables 
•  SOCPs: Thousands of variables 
•  SDPs: Hundreds of variables 
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What makes a problem “easy”? 
Expressivity  



Different Flavors of Convexity 
•  Linear Programs (LPs) 
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What makes a problem “easy”? 
Expressivity  

Scalability 



Optimal power flow (OPF) 
•  Non-convex, possibly large scale 

optimization 
 
Software Defined Networking (SDN) 
Active control of smart grid 
Automated highway systems 

•  All huge scale 
•  All need real time distributed (optimal) 

control 
•  Non-convex 
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Application Areas that Need(ed) our Help 



In general, these problems are non-convex and 
not scalable… 
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Use Structure to Relax 



DC OPF 
•  Connections to positive systems 
•  Connections to Sum of Squares Programming & Polynomial 

Optimization 

 
Distributed Optimal Control 

•  Why it’s hard: Witsenhausen 
•  How can we make it tractable: Quadratic Invariance 
•  How can we make it scalable: Localizable Systems 

 
Setup for 2nd Part 
 
Break 
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Roadmap for 1st Part 
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Case Study: DC OPF 
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3
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V2

V3

V4
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Kirchoff gives 

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011 
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Case Study: DC OPF 
V1

V2V3

V4 I4

I2I3

I1    The DC OPF problem is 
 
 
 
 
 
 
 
 

(a)  Kirchoff’s law 
(b)  Node power and voltage constraints 
(c)  Line constraints 

 

Indefinite Quadratic Objectives and Constraints à Non-Convex 

 
 
 
 

minimize

Ij ,Vj

PN
j=1

IjVj

subject to I = Y V (a)

VkIk  Pk, V min

k  Vk  V max

k (b)

yjk(Vk � Vj)
2  Ljk (c)

for all j, k = 1, . . . , N

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011 
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Case Study: DC OPF 

V1

V2V3

V4 I4

I2I3

I1

   The DC OPF problem is of the form 
 

Indefinite Quadratic Objectives and Constraints à Non-Convex  

 
 
 
 

maximize

x

x

>
M0x

subject to x

>
M

k

x � b

k

for k = 1, . . . ,K

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011 
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Case Study: DC OPF 

V1

V2V3

V4 I4

I2I3

I1

   The DC OPF problem is of the form 
 

Indefinite Quadratic Objectives and Constraints à Non-Convex  
In general, NP-Hard 

 
A little bit of algebra shows that the Mk are Metzler 

This case is NOT general 
 

 
 
 
 

maximize

x

x

>
M0x

subject to x

>
M

k

x � b

k

for k = 1, . . . ,K

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011 
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Case Study: DC OPF 

V1

V2V3

V4 I4

I2I3

I1
maximize

x

x

>
M0x

subject to x

>
M

k

x � b

k

for k = 1, . . . ,K

maximize

X⌫0
TrM0X

subject to TrMkX � bk
for k = 1, . . . ,K
rank(X) = 1

Still non-convex 

   The DC OPF problem is of the form 
 

 
 
 
 

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011 
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Case Study: DC OPF 

V1

V2V3

V4 I4

I2I3

I1
maximize

x

x

>
M0x

subject to x

>
M

k

x � b

k

for k = 1, . . . ,K

maximize

X⌫0
TrM0X

subject to TrMkX � bk
for k = 1, . . . ,K
rank(X) = 1

Convex! 
But are we solving the  

same problem? 

   The DC OPF problem is of the form 
 

 
 
 
 

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011 
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Case Study: DC OPF 

V1

V2V3

V4 I4

I2I3

I1
maximize

X⌫0
TrM0X

subject to TrMkX � bk
for k = 1, . . . ,K
rank(X) = 1

We are! Relaxation exact because of Metzler 
constraints 

   The DC OPF problem is of the form 
 

 
 
 
 

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011 
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Case Study: DC OPF 

V1

V2V3

V4 I4

I2I3

I1
maximize

X⌫0
TrM0X

subject to TrMkX � bk
for k = 1, . . . ,K
rank(X) = 1

We are! Relaxation exact because of Metzler 
constraints 

Let X = (xij) be any positive semi-definite matrix satisfying constraints.

xii � 0

xij  p
xiixjj

Let x = (

p
xii). Then (xx

>
)ii = Xii, but (xx

>
)ij =

p
xiixjj � Xij .

Then x

>
Mkx � TrMkX because Mk are Metzler.

   The DC OPF problem is of the form 
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Aside: Positive Systems Theory 
Dynamical system 
 
Suppose A is Metzler.  Then: 
 
 

How does this help?  Lyapunov/Storage functions can be 
linear! 

 
 
 
 

ẋ = Ax

x(0) 2 R+ =) x(t) 2 R+ 8t � 0

Theory: Tanaka &Langbort, 2012, Rantzer 2012, 2013,  
Biomed Applicatons: Jonsson, Matni & Murray, 2013, 2014, Jonsson, Rantzer & Murray 2013 
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Aside: Duality and Relaxations 
Lagrangian of original problem: 
 
 
 
Dual: 
 
 
 
Dual of dual: 
 
 
 
 
 
 
 
 
 

 
 
 
 

L(x,�k) = x

>
M0x+

PK
k=1 �k

�
x

>
Mkx� bk

�

= �
PK

k=1 �kbk + x

>
⇣
M0 +

PK
k=1 �kMk

⌘
x

minimize

�k�0
�
PK

k=1 �kbk

subject to M0 +
PK

k=1 �kMk � 0

maximize

X⌫0
TrM0X

subject to TrMkX � bk
for k = 1, . . . ,K
rank(X) = 1
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Aside: SOS Optimization 
Polynomial optimization = polynomial non-negativity 
 
 
 
Problem: testing polynomial non-negativity NP-hard in 
general. 
 
 
Solution: check weaker sufficient condition  
 
 
 

 
 
 
 

max p(x) = min � s.t. � � p(x) � 0

If p(x) =
P

q(x)2 then p(x) � 0
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Aside: SOS Optimization 
Computational test for SOS is a semi-definite program.  
 
For simplicity, fix d=1. Then 
 
 
 
 
 
Coefficients of p(x) impose affine constraints on Q. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

p(x) =

2

6664

1
x1
...
xn

3

7775

>

Q

2

6664

1
x1
...
xn

3

7775
is SOS if and only if Q ⌫ 0
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Aside: SOS Optimization 
Constrained polynomial optimization 
 
 
Relax to 
 
 
 
 
Get smaller and smaller upper bounds by letting d increase 
and including more “polynomial Lagrange multipliers”. 
 

So how does the DC OPF problem relate to this?  
 
 
 
 

 
 
 
 

min � s.t. � � p(x) = s0(x) +
P

i si(x)gi(x)

max p(x) s.t. gi(x) � 0

s0(x), si(x) are SOS(2d)
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Aside: SOS Optimization 
SOS relaxation of original problem: 
 
 
 
 
 
Expand RHS and equate coefficients 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

� = Q11
0 �

PK
k=1 Q

11
k bk, Q

1,j
k = 0 for all j 6= 1.

For k � 1, Qij
k = 0 for all i, j 6= 1

�M0 = Q2:n+1,2:n+1
0 +

PK
k=1 Q

11
k Mk

min � s.t. � � x

>
M0x = s0(x) +

P
k sk(x)

�
x

>
Mkx� bk

�

sk(x) =


1
x

�>
Qk


1
x

�
, Qk ⌫ 0
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Aside: SOS Optimization 
SOS relaxation of original problem: 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

minimize

Q11
k �0,Q⌫0

Q11
0 �

PK
k=1 Q

11
k bk

subject to

PK
k=1 Q

11
k Mk +M0 = �Q
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Aside: SOS Optimization 
SOS relaxation of original problem: 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

minimize

Q11
k �0,Q⌫0

Q11
0 �

PK
k=1 Q

11
k bk

subject to

PK
k=1 Q

11
k Mk +M0 = �Q

minimize

Q11
k �0,Q⌫0

�
PK

k=1 Q
11
k bk

subject to

PK
k=1 Q

11
k Mk +M0 � 0
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Aside: SOS Optimization 
SOS relaxation of original problem: 
 
 
 
 
 
 
 
 

 
This is the dual of our original problem! 

Quadratic optimization with Metzler matrices is SOS(2) 
exact. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

minimize

Q11
k �0,Q⌫0

Q11
0 �

PK
k=1 Q

11
k bk

subject to

PK
k=1 Q

11
k Mk +M0 = �Q

minimize

Q11
k �0,Q⌫0

�
PK

k=1 Q
11
k bk

subject to

PK
k=1 Q

11
k Mk +M0 � 0



Optimal power flow (OPF) 
•  Convex Relaxations are exact for DC 

power flow 
•  Go see Steven Low’s talk on Thursday for 

AC power and scalability 

Solution from OPF problem provides reference 
trajectory for system to track. 

 
Future smart grid will need active control 
Large scale ! Distributed Architecture 
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DC OPF: Summary 



DC OPF 
•  Connections to positive systems 
•  Connections to Sum of Squares Programming & Polynomial 

Optimization 

 
Distributed Optimal Control 

•  Why it’s hard: Witsenhausen 
•  How can we make it tractable: Quadratic Invariance 
•  How can we make it scalable: Localizable Systems 

 
Setup for 2nd Part 
 
Break 
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Roadmap for 1st Part 



 
Large scale systems not amenable to centralized 

control 
 
Idea: restrict information each controller has access to 
 
Positives: control laws are local, and hence scalable to 
implement. 
 
Negatives: in general non-convex.  Witsenhausen. 
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Distributed Control 
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Comms problem masquerading as a control problem 
 
Roughly, C1 needs to tell C2 (via x1  = u1 + x0 ) what x0 was 

–  C1’s only goal is to signal through the plant as efficiently as possible 
–  Reliable communication through noisy channel à coding (i.e. non-linear) 

Witsenhausen Counter-Example 

Demystifying the Witsenhausen Counterexample, Grover & Sahai ‘10 



 
Witsenhausen shows that distributed control is non-convex in 

general 
 

What structure do we need to regain convexity? 
 

Witsenhausen hard because of comms aspect.  Need to remove 
this incentive to signal. 

 
Quadratic Invariance (Rotkowitz & Lall ‘06), Partial Nestedness 
(Ho & Chu ‘72), Funnel Causality (Bahmieh & Voulgaris ’03), 

Poset Causality (Shah & Parrilo ‘12) 
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Distributed Control 



 
Witsenhausen shows that distributed control is non-convex in 
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What structure do we need to regain convexity? 
 

Witsenhausen hard because of comms aspect.  Need to remove 
this incentive to signal. 

 
Quadratic Invariance (Rotkowitz & Lall ‘06), Partial Nestedness 
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Distributed Control 



 
 

Classical Optimal Control Theory 
37 

K

z w

y u

Pzu

Pyu

Pzw

Pyw

minimizeKkPzw + PzuK(I � PyuK)�1Pywk
s.t. K causal

K(I � PyuK)�1 stable

disturbance regulated 
output 

control  
input 

measured 
output 

closed loop map from 
disturbance à reg. output 
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K

z w

y u

Pzu

Pyu

Pzw

Pyw

minimizeKkPzw + PzuK(I � PyuK)�1Pywk
s.t. K causal

K(I � PyuK)�1 stable

disturbance regulated 
output 

control  
input 

measured 
output 

Feedback 
is non-convex 

Classical Optimal Control Theory 
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K

z w

y u

Pzu

Pyu

Pzw

Pyw

disturbance regulated 
output 

control  
input 

measured 
output 

minimizeQkPzw + PzuQPywk
s.t. Q stable & causal

Convex in Q 

Classical Optimal Control Theory 



Many decision agents leads to information asymmetry 

 

Manifests as subspace constraints on K in optimal control 
problem. 

 
 
 
 
 
 
 

 

Distributed Optimal Control Theory 
40 

P1 P2 P3 P4

C4C3C2C1

Act/Sense Act/Sense Act/Sense Act/Sense 

minimizeKkPzw + PzuK(I � PyuK)�1Pywk
s.t. K causal

K(I � PyuK)�1 stable

K 2 S
Distributed 
constraint 



Many decision agents leads to information asymmetry 

 
Manifests as subspace constraints on K in optimal control 

problem. 
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P1 P2 P3 P4

C4C3C2C1

Act/Sense Act/Sense Act/Sense Act/Sense 

C4C3C2C1

� 1

z2
� 1

z3

2

664

⇤ 0 0 0
0 ⇤ 0 0
0 0 ⇤ 0
0 0 0 ⇤

3

775

2

664

⇤ ⇤ 0 0
⇤ ⇤ ⇤ 0
0 ⇤ ⇤ ⇤
0 0 ⇤ ⇤

3

775

2

664

⇤ ⇤ ⇤ 0
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤

3

775

t = �1 t = �2 t = �3

S =
1

z
� 1

z4Rp

Distributed Optimal Control Theory 



Many decision agents leads to information asymmetry 

Manifests as subspace constraints on K in optimal control 
problem. 

 
 
 
 
 
 
 

 

42 

P1 P2 P3 P4

C4C3C2C1

Act/Sense Act/Sense Act/Sense Act/Sense 

C4C3C2C1

S =
1

z

2

664

⇤ 0 0 0
⇤ ⇤ 0 0
⇤ ⇤ ⇤ 0
⇤ ⇤ ⇤ ⇤

3

775

Distributed Optimal Control Theory 
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A constraint set S is QI under Pyu  if 

          
     If S is QI under Pyu, then  

 
If we have QI, model matching problem becomes 

 
 
 
 

Convex in Q!   
 

How does this relate to our intuition about signaling? 

Quadratic Invariance 

43 

KPyuK 2 S, 8K 2 S

K 2 S if and only if Q 2 S

minimizeQ kPzw + PzuQPywk
s.t. Q stable & causal

Q 2 S
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QI if & only if                              
(Rotkowitz, Cogill & Lall ‘10) 

         
     

 

No incentive to “signal through the plant” 

TC  TA + TS + TP

Quadratic Invariance for Delay Patterns 
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C2C1

P1 P2

.

TC : communication delay

TA: actuation delay

TS : sensing delay

TP : propagation delay

      

    TC

TP

TA TS TATS



 
 

Distributed Optimal Control Theory 
45 

K

z w

y u

Pzu

Pyu

Pzw

Pyw

minimizeQ kPzw + PzuQPywk
s.t. Q stable & causal

Q 2 S

Distributed constraint 

disturbance regulated 
output 

control  
input 

measured 
output 



Distributed Optimal Control Theory 
46 

Outline two recent results in H2 (LQG) distributed control: 
 

1)  two player nested information structures (Lessard & 
Lall ‘12) 

2) strongly connected communication graphs 
(Lamperski & Doyle ‘13) 

To reduce to finite dimensional solution: 
exploit structure to find centralized sub-problems 

+ some other stuff  

Other approaches : poset causal systems, finite subspace 
approximations, SDP based solutions 



Two Player Nested Structure  
47 

C2C1

P1 P2
x1

u1

u1

u2

y1

y1 y2

Player 1 measures y1 and chooses u1 
Player 2 measures  y1, y2 and chooses u2 

K

z w

y u

Pzu

Pyu

Pzw

Pyw

Pyu =


⇤ 0
⇤ ⇤

�
K =


⇤ 0
⇤ ⇤

�
Lower block triangular structure  



Two Player Nested Structure  
48 

Player 1 measures y1 and chooses u1 
Player 2 measures  y1, y2 and chooses u2 

Pyu =


⇤ 0
⇤ ⇤

�
K =


⇤ 0
⇤ ⇤

�

How can we exploit lower block triangular structure 
to reduce to centralized problems? 

Sweep stabilization issues, etc. under the rug –  
see Lessard & Lall TAC ’14 for details 

 
 

minimize

Q
kPzw + PzuQPuwk2H2

subject to Q stable and lower



Two Player Nested Structure  
49 


Q11 0
Q12 Q22

�
= E1Q11E>

1 + E2

⇥
Q12 Q22

⇤
=


Q11

Q12

�
E>

1 + E2Q22E>
2

Centralized!!! 

How can we exploit lower block triangular structure 
to reduce to centralized problems? 
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
Q11 0
Q12 Q22

�
= E1Q11E>

1 + E2

⇥
Q12 Q22

⇤
=


Q11

Q12

�
E>

1 + E2Q22E>
2

Centralized!!! Fix Q11 and solve 

To get optimal 
⇥
Q#

12 Q#
22

⇤

minimize

[Q12 Q22]
k(Pzw + PzuE1Q11E>

1 Puw) + PzuE2

⇥
Q12 Q22

⇤
Puwk2H2

subject to

⇥
Q12 Q22

⇤
stable

Two Player Nested Structure  
How can we exploit lower block triangular structure 

to reduce to centralized problems? 
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
Q11 0
Q12 Q22

�
= E1Q11E>

1 + E2

⇥
Q12 Q22

⇤
=


Q11

Q12

�
E>

1 + E2Q22E>
2

Centralized!!! Fix Q22 and solve 

To get optimal 

minimizeh
QH

11 QH
12

iH
k(Pzw + PzuE2Q22E>

2 Puw) + Pzu


Q11

Q12

�
E>

1 Puwk2H2

subject to

⇥
QH

11 QH
12

⇤H
stable


Q⇤

11

Q⇤
12

�

Two Player Nested Structure  
How can we exploit lower block triangular structure 

to reduce to centralized problems? 
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By uniqueness of optimal solution 

Q
opt

=


Q⇤

11 0
Q⇤

12 Q#
22

�
=


Q⇤

11 0
Q#

12 Q#
22

�

Main idea: use structure to get centralized problems,  
and then do some extra “stuff” 

Generalizes to other nested topologies such as N-player chain 
(Lessard et al. ‘14, Tanaka and Parrilo ‘14)  

Two Player Nested Structure  

How can we exploit lower block triangular structure 
to reduce to centralized problems? 



Strongly Connected Communication Graphs 
53 

P1 P2 P3 P4

C4C3C2C1

Act/Sense Act/Sense Act/Sense Act/Sense 

C4C3C2C1

� 1

z2
� 1

z3

2

664

⇤ 0 0 0
0 ⇤ 0 0
0 0 ⇤ 0
0 0 0 ⇤

3

775

2

664

⇤ ⇤ 0 0
⇤ ⇤ ⇤ 0
0 ⇤ ⇤ ⇤
0 0 ⇤ ⇤

3

775

2

664

⇤ ⇤ ⇤ 0
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤

3

775

t = �1 t = �2 t = �3

S =
1

z
� 1

z4Rp

How can we exploit strongly connected structure 
to reduce to centralized problems? 
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S = Y � 1
zN+1Rp

Q = V � U

Time in the past Current time -(N+1) 

FIR filter V
Local action based

on partial information

IIR component U : global action

based on delayed global information

We can play the same game: rewrite Q and solve for U in terms of V 

Strongly Connected Communication Graphs 
How can we exploit strongly connected structure 

to reduce to centralized problems? 
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Q = V � U

Time in the past Current time -(N+1) 

FIR filter V
Local action based

on partial information

IIR component U : global action

based on delayed global information

minimize

U
kPzw + PzuV Puw + PzuUPuwk2H2

subject to U 2 1
zN+1H2

Delayed but centralized: can get analytic solution in terms of V. 
Again some magic happens, and problem reduces to… 

(Lamperski & Doyle ’13 and ‘14) 

Strongly Connected Communication Graphs 
How can we exploit strongly connected structure 

to reduce to centralized problems? 
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IIR component U⇤
: global action

based on delayed global information

U⇤
= QN �WLP 1

zN+1 H2
(W�1

L VW�1
R )WR

•  Optimal controller has 2 regimes 

 
 

 
 

After N+1 steps:  each node has access to global delayed state. 

Key feature:  Finite impulse response (FIR) filter V* solves: 

minimizeV

NX

i=1

⇣
TrGi(V ) (Gi(V ))> + 2TrGi(V )T>

i

⌘

s.t. Vi 2 Yi

56 

Time in the past Current time -(N+1) 

FIR filter V ⇤

Local action based

on partial information

Strongly Connected Communication Graphs 



 
Large scale systems not amenable to centralized 

control 
 
Idea: restrict information each controller has access to 
Positives: control laws are local, and hence scalable to 
implement. 
Negatives: in general non-convex.  Witsenhausen. 
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Distributed Control 



 
Large scale systems not amenable to centralized 

control 
 
Idea: restrict information each controller has access to 
Positives: control laws are local, and hence scalable to 
implement. 
Negatives: in general non-convex.  Witsenhausen. 
 
Positives: with additional structure, regain convexity 
and finite dimensionality. 
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Distributed Control 



 
Large scale systems not amenable to centralized 

control 
 
Idea: restrict information each controller has access to 
Positives: control laws are local, and hence scalable to 
implement. 
Negatives: in general non-convex.  Witsenhausen. 
 
Positives: with additional structure, regain convexity 
and finite dimensionality. 
Negatives: had to give up scalability in the process. 
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Distributed Control 



 
In all cases, optimal controller is as expensive to 

compute as centralized counter part 
 

and 
 

Can be even more difficult to implement! 
 

What structure do we need to impose to maintain 
convexity and regain scalability? 
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Distributed Control 



 
In all cases, optimal controller is as expensive to 

compute as centralized counter part 
 

and 
 

Can be even more difficult to implement! 
 

What structure do we need to impose to maintain 
convexity and regain scalability? 

 
LOCALIZABILITY 

(Wang, M., You & Doyle ‘13, Wang, M., & Doyle ‘13) 
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Distributed Control 
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QI if & only if                              
(Rotkowitz, Cogill & Lall ‘10) 

         
     

 

No incentive to “signal through the plant” 

TC  TA + TS + TP

Quadratic Invariance for Delay Patterns 

62 

C2C1

P1 P2

.

TC : communication delay

TA: actuation delay

TS : sensing delay

TP : propagation delay

      

    TC

TP

TA TS TATS
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Localizability requires                                  

         
     

 

Get ahead of disturbance and cancel it out 

Localizability 
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C2C1

P1 P2

.

TC : communication delay

TA: actuation delay

TS : sensing delay

TP : propagation delay

      

    TC

TP

TA TS TATS

TC + TA + TS  TP

space 

T 

d 
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Localizing Control Scheme 

         
     

 

Get ahead of disturbance and cancel it out 

Localizability 
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past present future 

space 

T 

d 

Slope h Slope -h 

Information 
Collection	


Affected 
Region	


Cj 

wj[k] 
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Spatio-temporal deadbeat control at each node 

         
     

 

Localizability 
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minimize

x[k], u[k]
f(x[0 : k], u[0 : k])

subject to x[0] = e

i

x[k + 1] = Ax[k] +Bu[k]

x[k] 2 S
x

u[1 : k] 2 S
u

x[T ] = 0
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Spatio-temporal deadbeat control at each node 
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Favorite convex cost minimize

x[k], u[k]
f(x[0 : k], u[0 : k])

subject to x[0] = e

i

x[k + 1] = Ax[k] +Bu[k]

x[k] 2 S
x

u[1 : k] 2 S
u

x[T ] = 0

Localizability 
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Spatio-temporal deadbeat control at each node 
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Favorite convex cost minimize

x[k], u[k]
f(x[0 : k], u[0 : k])

subject to x[0] = e

i

x[k + 1] = Ax[k] +Bu[k]

x[k] 2 S
x

u[1 : k] 2 S
u

x[T ] = 0

Initial disturbance 

Localizability 
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Spatio-temporal deadbeat control at each node 

         
     

 

68 

Favorite convex cost 

Dynamics 

minimize

x[k], u[k]
f(x[0 : k], u[0 : k])

subject to x[0] = e

i

x[k + 1] = Ax[k] +Bu[k]

x[k] 2 S
x

u[1 : k] 2 S
u

x[T ] = 0

Initial disturbance 

Localizability 
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Spatio-temporal deadbeat control at each node 
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Favorite convex cost 

Dynamics 
Spatial constraints 

minimize

x[k], u[k]
f(x[0 : k], u[0 : k])

subject to x[0] = e

i

x[k + 1] = Ax[k] +Bu[k]

x[k] 2 S
x

u[1 : k] 2 S
u

x[T ] = 0

Initial disturbance 

Localizability 
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Spatio-temporal deadbeat control at each node 

         
     

 

70 

Favorite convex cost 

Dynamics 
Spatial constraints 

minimize

x[k], u[k]
f(x[0 : k], u[0 : k])

subject to x[0] = e

i

x[k + 1] = Ax[k] +Bu[k]

x[k] 2 S
x

u[1 : k] 2 S
u

x[T ] = 0

Initial disturbance 

Comm constraints 

Localizability 
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Spatio-temporal deadbeat control at each node 
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Favorite convex cost 

Dynamics 
Spatial constraints 

minimize

x[k], u[k]
f(x[0 : k], u[0 : k])

subject to x[0] = e

i

x[k + 1] = Ax[k] +Bu[k]

x[k] 2 S
x

u[1 : k] 2 S
u

x[T ] = 0

Initial disturbance 

Comm constraints 
Temporal constraints 

Localizability 
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Spatio-temporal deadbeat control at each node 
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Favorite convex cost 

Dynamics 
Spatial constraints 

minimize

x[k], u[k]
f(x[0 : k], u[0 : k])

subject to x[0] = e

i

x[k + 1] = Ax[k] +Bu[k]

x[k] 2 S
x

u[1 : k] 2 S
u

x[T ] = 0

Initial disturbance 

Comm constraints 
Temporal constraints 
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… 

S
x

,S
u

x, u = 0

Localizability 
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Spatio-temporal deadbeat control at each node 
lets us restrict to sub-models for design/implementation 
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Favorite convex cost 

Dynamics 
Spatial constraints 
Comm constraints 
Temporal constraints 

Initial disturbance 

… 

x, u = 0

(Ai, Bi)

Si

x

,Si

u

minimize

x

i[k], ui[k]
f(x

i

[0 : k], u

i

[0 : k])

subject to x

i

[0] = e

i

x

i

[k + 1] = A

i

x[k] +B

i

u[k]

x

i

[k] 2 Si

x

u

i

[1 : k] 2 Si

u

x

i

[T ] = 0

Localizability 
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LQR cost splits along disturbances: 
Completely Local Globally Optimal Solution 

         
     

 

Localizability 
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LQR cost  

Dynamics 
Spatial constraints 
Comm constraints 
Temporal constraints 

Initial disturbance 

… 

x, u = 0

(Ai, Bi)

Si

x

,Si

u

minimize

x

i[k], ui[k]
kxi

[0 : k]k22 + kui

[0 : k]k22
subject to x

i

[0] = e

i

x

i

[k + 1] = A

i

x[k] +B

i

u[k]

x

i

[k] 2 Si

x

u

i

[1 : k] 2 Si

u

x

i

[T ] = 0
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Extensions in the works for 
 

Output feedback 
 

and 
 

Non-separable cost functions 
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… 

x, u = 0

(Ai, Bi)

Si

x

,Si

u

Localizability 



DC OPF 
•  Connections to positive systems 
•  Connections to Sum of Squares Programming & Polynomial 

Optimization 

 
Distributed Optimal Control 

•  Why it’s hard: Witsenhausen 
•  How can we make it tractable: Quadratic Invariance 
•  How can we make it scalable: Localizable Systems 

 
Setup for 2nd Part 
 
Break 
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Roadmap for 1st Part 



“Easy” problems are convex and scalable 
 
Interesting problems are large scale and non-convex 
 
Solution: Exploit Structure to Relax 

 
Indefinite QPs are hard in general  

DC OPF is tractable because of Metzler structure 
 

Distributed control is hard in general 
Computationally tractable if we have QI 

Scalable if we have localizability  
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Recap of 1st Part 



 
Made lots of assumptions for distributed control 

 
Can communicate with infinite bandwidth 

 
 Communication occurs with fixed delays 

 
Have a known system model with known structure 

 
Have a control architecture (actuation, sensing, 

communication) 
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What have we swept under the rug? 



Networked Control Systems 
•  Single plant/controller: connections with information theory 
•  Approaches for extending to distributed control 

 
Varying Delays 

•  Recent progress 
 
Distributed System Identification 

•  Known structure 
•  Unknown structure 

Control Architecture Design 
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Roadmap for 2nd  Part 



Networked Control Systems 
•  Single plant/controller: connections with information theory 
•  Approaches for extending to distributed control 

 
Varying Delays 

•  Recent progress 
 
Distributed System Identification 

•  Known structure 
•  Unknown structure 

Control Architecture Design 
 
Emphasize Connections to Optimization & Statistics 
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Roadmap for 2nd  Part 
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Networked Control Systems 

Classical control system 

Plant 

Controller 

u
=

K
y

y
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Networked Control Systems 

Classical control system 

Plant 

Controller 

u
=

K
y

y

∞ bandwidth 
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Networked Control Systems 

Networked control system 

Plant 

Controller 

Cy 

ŷ

y

u = Kŷ

Cu 

û

Adding realistic channels leads to 
interplay between information and control theory  
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Networked Control Systems 

Stabilization well understood 
Plant 

Controller 

Cy Cu 

Channel Capacity � Plant “instability”
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Networked Control Systems 

Stabilization well understood 
Plant 

Controller 

Cy Cu 

Channel Capacity � Plant “instability”

Plant ”instability”: Entropy H =

P
|�j |�1 log2 �j
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Networked Control Systems 

Stabilization well understood 
Plant 

Controller 

Cy Cu 

Channel Capacity � Plant “instability”

Examples 

Channel Type Condition Reference 
Limited data rate R Nair & Evans ‘04 
 
SNR constrained AWGN 

Braslavsky, 
Middleton & 
Freudenberg ’07 

Noisy and quantized Anytime reliability > H Sahai and Mitter ‘06 

R > H

Plant ”instability”: Entropy H =

P
|�j |�1 log2 �j

C

log2 e
>

X

�i:Re�i>0

Re�i
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Networked Control Systems 

Stabilization well understood 
Plant 

Controller 

Cy Cu 

Channel Capacity � Plant “instability”

Examples 

Channel Type Condition Reference 
Limited data rate R Nair & Evans ‘04 
 
SNR constrained AWGN 

Braslavsky, 
Middleton & 
Freudenberg ’07 

Noisy and quantized Anytime reliability > H Sahai and Mitter ‘06 

R > H

Plant ”instability”: Entropy H =

P
|�j |�1 log2 �j

C

log2 e
>

X

�i:Re�i>0

Re�i

Extensions to varying rates (Minero et. al ‘09, ‘13 ) 
Tree codes for achieving anytime reliability (Sukhavasi & Hassibi ‘13) 
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Networked Control Systems 

Performance limits well understood 
Plant 

Controller 

Cy Cu Martins and Dahleh ‘08 

1
2⇡

R ⇡
�⇡ log(S(!))d! �

Pn
i=1 max{0, log |�i(A)|}

No channel gives us standard* Bode integral bound 



89 

Networked Control Systems 

Performance limits well understood 
Plant 

Controller 

Cy Cu Martins and Dahleh ‘08 

1
2⇡

R ⇡
�⇡ log(S(!))d! �

Pn
i=1 max{0, log |�i(A)|}

No channel gives us standard* Bode integral bound 

Channel in the loop hurts us 
1
2⇡

R ⇡
�⇡ min{0, log(S(!))}d! �

Pn
i=1 max{0, log |�i(A)|}� Cf
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Networked Control Systems 

Performance limits well understood 
Plant 

Controller 

Cy Cu Martins and Dahleh ‘08 

1
2⇡

R ⇡
�⇡ log(S(!))d! �

Pn
i=1 max{0, log |�i(A)|}

No channel gives us standard* Bode integral bound 

Channel in the loop hurts us 
1
2⇡

R ⇡
�⇡ min{0, log(S(!))}d! �

Pn
i=1 max{0, log |�i(A)|}� Cf

MARTINS AND DAHLEH: FEEDBACK CONTROL IN THE PRESENCE OF NOISY CHANNELS 1613

Fig. 8. Pictorial comparison between Bode’s inequality and the new bound on
disturbance attenuation, where and represent areas under the graph, while

is the area above the graph.

B. Finite Feedback Capacity: A Universal Bound on
Disturbance Attenuation

Going back to the scheme of Fig. 4, the following Theorem
characterizes a universal bound on disturbance attenuation in
the presence of communication constraints.

Theorem 6.3: Consider the scheme of Fig. 4, where
and are assumed jointly asymptotically stationary, with
Gaussian auto-regressive. If the state of the plant satisfies

then the following holds:

(57)

where is the feedback capacity and is the dynamic matrix
of the plant.

Proof: The proof follows from Corollary 5.3 along with
Theorem 6.2.

We stress that the bound in (57) is valid for any channel and
it depends only on the feedback capacity and on the unstable
eigenvalues of . This inequality could not be predicted from
Bode’s result nor from previous results.

We should also mention that there is a good intuitive reason
why the positive part of the log-sensitivity integral is not present
in (57). For a given , assume that , where
is some exogenous stochastic process, which is independent of

. Clearly, increasing does not increase and, on the
other hand, for each frequency , the power spectral density

is an increasing function of , with derivative given by
.

VII. CONCLUSION

By using notions, from Information Theory, such as mutual
information and (differential) entropy, we have characterized
conservation laws that hold under causality, which is a basic at-
tribute of physical systems. In particular, we show that the dif-
ferential entropy, induced by external excitation, cannot be re-
duced by causal feedback. This principle is related to the Bode
integral formula, originally derived for linear and time-invariant
feedback systems. The aforementioned analysis extends Bode’s
ideas to arbitrary feedback. In addition, we deduce information
flow inequalities that can be used for establishing a universal
bound of performance, in the frequency domain.

Fig. 9. Linear and time-invariant feedback scheme for the computation of in-
formation rates.

APPENDIX I
AUXILIARY RESULTS

Lemma A.1: Let and be white Gaussian sequences with
positive variances and . Consider the feedback loop of
Fig. 9, where and represent linear and time-invariant sys-
tems, where is assumed stable. If the feedback loop is stable
then the following holds:

(58)

Proof: We leave to the reader the detailed proof of the fol-
lowing equality:

(59)

where is the stationary information rate, i.e., the
information rate which we would get if the probability
of the overall initial state, of the feedback loop in Fig. 9,
was the stationary solution. The proof of (59) follows by
using the fact that the elements of the covariance matrix
of converge uniformly and with exponential
rate to the stationary solution. The convergence is expo-
nential in because the feedback loop is stable, linear and
time-invariant. Indeed, (59) follows by noticing that, for
the Gaussian case, the mutual information between and

is given by ,
where and are the covariance matrices of

and , respectively. The convergence of the
determinants follows by Gershgorin’s Circle Theorem.

On the other hand, from Theorem 10.2.1 [16], we know that:

(60)

Similar computations of the information rate for the Gaussian
case can be found in [5].
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Networked Control Systems 

Achieving these limits  
much less well understood 

 

Plant 
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Cy Cu 
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Achieving these limits  
much less well understood 

 
Results exist for special cases 
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Networked Control Systems 

Achieving these limits  
much less well understood 

 
Results exist for special cases 

Plant 

Controller 

Cy Cu 

Even for a single plant and controller 
optimal control is difficult under noisy channels 
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Networked Control Systems 

Achieving these limits  
much less well understood 

 
Results exist for special cases 

Plant 

Controller 

Cy Cu 

Even for a single plant and controller 
optimal control is difficult under noisy channels 

Modeling assumption: underlying channel manifests 
as possibly unbounded and varying delays 
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Varying Delays 

Two player LQR state feedback with varying delay 
 has explicit solution 

 
C2C1

P1 P2�

�
Act/

Sense 
Act/

Sense 
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Two player LQR state feedback with varying delay 
 has explicit solution 

 
C2C1

P1 P2�

�
Act/
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if delay pattern leads to partially nested 
information pattern throughout 
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Varying Delays 

Two player LQR state feedback with varying delay 
 has explicit solution 

 
C2C1

P1 P2�

�
Act/

Sense 
Act/

Sense 

if delay pattern leads to partially nested 
information pattern throughout 

Dynamic Programming based solution  
(M. & Doyle ’13, M., Lamperski & Doyle ‘14) 
Builds off of Lamperski & Doyle ‘12, Lamperski & Lessard ‘13 
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Varying Delays 

Extensions to more general topologies? 

Will require Dynamic Programming based solutions  
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Varying Delays 

Extensions to more general topologies? 

Will require Dynamic Programming based solutions  

These should be available soon, as sufficient statistics 
are now well understood 

“Sufficient statistics for linear control strategies in 
 decentralized systems with partial history sharing, Mahajan & Nayyar”, ‘14 

“Sufficient statistics for team decision problems”, Wu (& Lall), ‘13 
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Varying Delays 

Extensions to more general topologies? 

Will require Dynamic Programming based solutions  

These should be available soon, as sufficient statistics 
are now well understood 

“Sufficient statistics for linear control strategies in 
 decentralized systems with partial history sharing, Mahajan & Nayyar”, ‘14 

Unbounded delays? 

“Sufficient statistics for team decision problems”, Wu (& Lall), ‘13 
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Varying Delays 

Extensions to more general topologies? 

Will require Dynamic Programming based solutions  

These should be available soon, as sufficient statistics 
are now well understood 

“Sufficient statistics for linear control strategies in 
 decentralized systems with partial history sharing, Mahajan & Nayyar”, ‘14 

Unbounded delays? 

Progress is promising on both the coding and control side 

“Sufficient statistics for team decision problems”, Wu (& Lall), ‘13 



Networked Control Systems 
•  Single plant/controller: connections with information theory 
•  Approaches for extending to distributed control 

 
Varying Delays 

•  Recent progress 
 
Distributed System Identification 

•  Known structure 
•  Unknown structure 

Control Architecture Design 
 
Emphasize Connections to Optimization & Statistics 
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Roadmap for 2nd  Part 



Traditional subspace methods destroy structure 
A good algorithm leverages structure rather than ignoring it 
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SysID with Known Structure 



Traditional subspace methods destroy structure 
A good algorithm leverages structure rather than ignoring it 

 
We want convexity and scalability 
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SysID with Known Structure 



Traditional subspace methods destroy structure 
A good algorithm leverages structure rather than ignoring it 

 
We want convexity and scalability 

 
Can we exploit known structure to get an algorithm that 

is local (scalable) and convex 
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SysID with Known Structure 



Quick Review of Basic SysID 
    Dynamics           Input/output 
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SysID with Known Structure 

xt+1 = Axt +But

yt = Cxt +Dut

yt =
Pt

⌧=0 G⌧ut�⌧

G0 = D, G⌧ = CA⌧�1B



Quick Review of Basic SysID 
    Dynamics           Input/output 
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SysID with Known Structure 

xt+1 = Axt +But

yt = Cxt +Dut

YN =
⇥
yN�M yN�(M�1) · · · yN

⇤

yt =
Pt

⌧=0 G⌧ut�⌧

G0 = D, G⌧ = CA⌧�1B

UN,M,r =

2

6664

uN�M uN�(M�1) · · ·uN

uN�(M+1) uN�M · · ·uN�1
...

...
. . .

...
uN�(M+r) uN�(M+r�1) · · ·uN�r

3

7775

G =
⇥
G0 G1 · · · Gr

⇤



Quick Review of Basic SysID 
    Dynamics           Input/output 
 

 

 
 
 
 

108 

SysID with Known Structure 

xt+1 = Axt +But

yt = Cxt +Dut

YN =
⇥
yN�M yN�(M�1) · · · yN

⇤

yt =
Pt

⌧=0 G⌧ut�⌧

G0 = D, G⌧ = CA⌧�1B

UN,M,r =

2

6664

uN�M uN�(M�1) · · ·uN

uN�(M+1) uN�M · · ·uN�1
...

...
. . .

...
uN�(M+r) uN�(M+r�1) · · ·uN�r

3

7775

G =
⇥
G0 G1 · · · Gr

⇤

YN = GUN,M,r =) G = YNU†
N,M,rI/O identification: 



Quick Review of Basic Realization 
Given G0, …,Gr , build Hankel matrix: 
 
 
 
 
 
If system order n is less than r then rank(H(G))=n, and 
(A,C) can be identified via SVD, (B,D) can be identified via 
least-squares. 
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SysID with Known Structure 

H(G) =

2

66664

G1 G2 · · · Gr/2

G2 G3 . .
.

Gr/2+1
... . .

. . . .
...

Gr/2 Gr/2+1 · · · Gr

3

77775



Combine to deal with process and observation noise 
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SysID with Known Structure 

minimize

G0,...,Gr

rank(H(G))

subject to kYN �GUN,M,rk2F  �2



Combine to deal with process and observation noise 
 
 
 
 
 

 
 
 

More on why this is the right thing to do later. 
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SysID with Known Structure 

minimize

G0,...,Gr

rank(H(G))

subject to kYN �GUN,M,rk2F  �2

minimize

G0,...,Gr

kH(G)k⇤
subject to kYN �GUN,M,rk2F  �2

Non-convex! 
Relax to 



Easy case: we can measure all interconnecting signals 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured low order

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Easy case: we can measure all interconnecting signals 
 
 

 

 
Where now U consists of local  
inputs and measured interconnecting signals. 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured low order

minimize

G0,...,Gr

kH(G)k⇤
subject to kYN �GUN,M,rk2F  �2

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Easy case: we can measure all interconnecting signals 
 
 

 

 
Where now U consists of local  
inputs and measured interconnecting signals. 
 
Need to get neighbors to inject excitation as well. 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured low order

minimize

G0,...,Gr

kH(G)k⇤
subject to kYN �GUN,M,rk2F  �2

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Tricky case: we miss some interconnecting signals 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured

interconnection signals

hidden

low+high order

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Tricky case: we miss some interconnecting signals 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured

interconnection signals

hidden

low+high order

yt =
Pt

⌧=0 G⌧ut�⌧ +H⌧ut�⌧

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Tricky case: we miss some interconnecting signals 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured

interconnection signals

hidden

low+high order

Low-order  
but full rank 

High-order  
but low rank 

yt =
Pt

⌧=0 G⌧ut�⌧ +H⌧ut�⌧

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Tricky case: we miss some interconnecting signals 
 
 

 

 
Can we separate out the two components? 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured

interconnection signals

hidden

low+high order

Low-order  
but full rank 

High-order  
but low rank 

yt =
Pt

⌧=0 G⌧ut�⌧ +H⌧ut�⌧

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Tricky case: we miss some interconnecting signals 
 
 

 

 
Can we separate out the two components? 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured

interconnection signals

hidden

low+high order

Low-order  
but full rank 

High-order  
but low rank 

yt =
Pt

⌧=0 G⌧ut�⌧ +H⌧ut�⌧

minimize

{Gk},{Hk}
rank(H(G))

subject to kYN � (G+H)UN,M,rk2F  �2

rank(H(ej!))  k

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Tricky case: we miss some interconnecting signals 
 
 

 

 
Can we separate out the two components? 
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SysID with Known Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured

interconnection signals

hidden

low+high order

Low-order  
but full rank 

High-order  
but low rank 

yt =
Pt

⌧=0 G⌧ut�⌧ +H⌧ut�⌧

minimize

{Gk},{Hk}
kH(G))k⇤

subject to kYN � (G+H)UN,M,rk2F  �2

kH(ej!)k⇤  k

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Tricky case: we miss some interconnecting signals 
 
 

 

 
Can we separate out the two components? 
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SysID with Unknown Structure 

+

High Order
Large Scale System

local system

low order

local

inputs

local

measurements

interconnection signals

measured

interconnection signals

hidden

low+high order

Low-order  
but full rank 

High-order  
but low rank 

yt =
Pt

⌧=0 G⌧ut�⌧ +H⌧ut�⌧

minimize

{Gk},{Hk}
kH(G))k⇤

subject to kYN � (G+H)UN,M,rk2F  �2

kH(ej!)k⇤  k

Key feature:  
exploiting structure to de-convolve response 

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14  



Networked Control Systems 
•  Single plant/controller: connections with information theory 
•  Approaches for extending to distributed control 

 
Varying Delays 

•  Recent progress 
 
Distributed System Identification 

•  Known structure 
•  Unknown structure 

Control Architecture Design 
 
Emphasize Connections to Optimization & Statistics 
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Roadmap for 2nd  Part 



Will consider simpler case of identifying structure in 
Graphical Models 

123 

Latent Variables in Graphical Models 

X ⇠ N (0,⌃)
1 2 

5 

3 4 

Xi and Xj

independent conditioned

on other vars



Will consider simpler case of identifying structure in 
Graphical Models 

124 

Latent Variables in Graphical Models 

X ⇠ N (0,⌃)
1 2 

5 

3 4 

(⌃�1)ij = 0

Xi and Xj

independent conditioned

on other vars

⌃�1 =

2

66664

⇤ 0 0 0 ⇤
0 ⇤ 0 0 ⇤
0 0 ⇤ 0 ⇤
0 0 0 ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

3

77775



Traditional estimation procedure 
 
Collect samples 
 
Build sample covariance matrix 
 
For N>n, sample covariance is invertible. 
 
Threshold         to identify structure 
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Latent Variables in Graphical Models 
1 2 

5 

3 4 

X1, . . . , XN

⌃̂ = 1
N

PN
i=1(X

i)(Xi)>

⌃̂�1



If we know model is sparse a priori 
 
Collect samples 
 
Build sample covariance matrix 
 
 
For N<n, solve 
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Latent Variables in Graphical Models 
1 2 

5 

3 4 

X1, . . . , XN

⌃̂ = 1
N

PN
i=1(X

i)(Xi)>

minimize

K
Tr

ˆ

⌃K � log detK + �kKk0

Non-convex 



If we know model is sparse a priori 
 
Collect samples 
 
Build sample covariance matrix 
 
 
For N<n, solve 
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Latent Variables in Graphical Models 
1 2 

5 

3 4 

X1, . . . , XN

⌃̂ = 1
N

PN
i=1(X

i)(Xi)>

minimize

K
Tr

ˆ

⌃K � log detK + �kKk1

convex 



If we know model is sparse a priori 
 
Collect samples 
 
Build sample covariance matrix 
 
 
For N<n, solve 
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Latent Variables in Graphical Models 
1 2 

5 

3 4 

X1, . . . , XN

⌃̂ = 1
N

PN
i=1(X

i)(Xi)>

minimize

K
Tr

ˆ

⌃K � log detK + �kKk1

convex 
This works!  Banerjee et al. ‘06, Ravikumar et al. ’08, … 



But what if we miss a variable? 
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Latent Variables in Graphical Models 

1 2 

5 

3 4 

⌃�1 =

2

66664

⇤ 0 0 0 ⇤
0 ⇤ 0 0 ⇤
0 0 ⇤ 0 ⇤
0 0 0 ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

3

77775



But what if we miss a variable? 
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Latent Variables in Graphical Models 

1 2 

5 

3 4 



But what if we miss a variable? 
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Latent Variables in Graphical Models 

1 2 

5 

3 4 

(⌃O)�1 =

2

664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

775



But what if we miss a variable? 
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Latent Variables in Graphical Models 

1 2 

5 

3 4 

(⌃O)�1 =

2

664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

775
(⌃)�1 = K =


KO KO,H

KH,O KH,H

�

⌃ =


⌃O ⌃O,H

⌃H,O ⌃H,H

�



But what if we miss a variable? 
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Latent Variables in Graphical Models 

1 2 

5 

3 4 

(⌃O)�1 =

2

664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

775

(⌃O)�1 = KO �KO,HK�1
H KH,O

(⌃)�1 = K =


KO KO,H

KH,O KH,H

�

⌃ =


⌃O ⌃O,H

⌃H,O ⌃H,H

�

Sparse Low-rank 



But what if we miss a variable? 
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Latent Variables in Graphical Models 

1 2 

5 

3 4 

(⌃O)�1 =

2

664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

775
(⌃)�1 = K =


KO KO,H

KH,O KH,H

�

⌃ =


⌃O ⌃O,H

⌃H,O ⌃H,H

�

This works!  Chandrasekaran, Parrilo & Willsky ’12 

minimize

S,L
Tr

ˆ

⌃O(S � L)� log det(S � L) + �kSk1 + �kLk⇤
subject to S � L � 0, L ⌫ 0



But what if we miss a variable? 
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Latent Variables in Graphical Models 

1 2 

5 

3 4 

(⌃O)�1 =

2

664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

775
(⌃)�1 = K =


KO KO,H

KH,O KH,H

�

⌃ =


⌃O ⌃O,H

⌃H,O ⌃H,H

�

This works!  Chandrasekaran, Parrilo & Willsky ’12 

Key feature:  
exploiting structure to de-convolve response 

minimize

S,L
Tr

ˆ

⌃O(S � L)� log det(S � L) + �kSk1 + �kLk⇤
subject to S � L � 0, L ⌫ 0



Networked Control Systems 
•  Single plant/controller: connections with information theory 
•  Approaches for extending to distributed control 

 
Varying Delays 

•  Recent progress 
 
Distributed System Identification 

•  Known structure 
•  Unknown structure 

Control Architecture Design 
 
Emphasize Connections to Optimization & Statistics 
 

 

 
 
 
 

136 

Roadmap for 2nd  Part 



In SysID, induced structure in solution to identify 
models 

 
Can we induce structure to design control architectures? 
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Control Architecture Design 



In SysID, induced structure in solution to identify 
models 

 
Can we induce structure to design control architectures? 

 
Communication Delay Design 

& 
Actuator placement 

 
 

 

 
 
 
 

138 

Control Architecture Design 



In SysID, induced structure in solution to identify 
models 

 
Can we induce structure to design control architectures? 

 
Communication Delay Design 

& 
Actuator placement 

 
 

Key Feature: Convex Co-Design Procedure 
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Control Architecture Design 



140 

 
 

 

Comm Delay Co-Design 

minimizeV

NX

i=1

⇣
TrGi(V ) (Gi(V ))> + 2TrGi(V )T>

i

⌘

s.t. Vi 2 Yi

140 

IIR component U⇤
: global action

based on delayed global information

U⇤
= QN �WLP 1

zN+1 H2
(W�1

L VW�1
R )WR

Time in the past Current time -(N+1) 

FIR filter V ⇤

Local action based

on partial information
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•  Entire decentralized nature captured in V 

Comm Delay Co-Design 

minimizeV

NX

i=1

⇣
TrGi(V ) (Gi(V ))> + 2TrGi(V )T>

i

⌘

s.t. Vi 2 Yi

141 
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•  Entire decentralized nature captured in V 

•  Remove constraints 

Comm Delay Co-Design 

minimizeV

NX

i=1

⇣
TrGi(V ) (Gi(V ))> + 2TrGi(V )T>

i

⌘

s.t. Vi 2 Yi

142 
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•  Entire decentralized nature captured in V 

•  Remove constraints 

•  Add penalty to induce simple structure 

Comm Delay Co-Design 

minimizeV

NX

i=1

⇣
TrGi(V ) (Gi(V ))> + 2TrGi(V )T>

i

⌘

s.t. Vi 2 Yi

+�kV kA

143 
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•  Entire decentralized nature captured in V 

•  Remove constraints 

•  Add penalty to induce simple structure 

•  What kind of structure in V?  

•  How to induce it in a convex way? 

Comm Delay Co-Design 

minimizeV

NX

i=1

⇣
TrGi(V ) (Gi(V ))> + 2TrGi(V )T>

i

⌘

s.t. Vi 2 Yi

+�kV kA
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Main Tool: Atomic Norms 
145 

k · k`1 ball
sparse vectors

low-rank matrices

k · k⇤ ball

“good” graphs

??? 

⇥X⇥A := inf{t > 0 | X � tconv(A)}

[Chandrasekaran-Recht-Parrilo-Willsky] 



Designed communication graph should 

1.  Satisfy tractability requirements (QI) 
2.  Be strongly connected (SC) 
3.  Be simple 
4.  Yield acceptable closed loop performance 

Insight: Adjacency matrices of graphs satisfying 1 and 2 are closed 
under addition. 
 
Approach: Minimize structure inducing norm subject to performance 
constraint 

 
 

The Graph Enhancement “Norm” 
146 



Start with base that is QI and SC 

 
Add shortcuts 
 
 
 
 
 
Project out base 
 

 

The Graph Enhancement “Norm” 
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C4C3C2C1

� 1

z2
� 1

z3

2

664

⇤ 0 0 0
0 ⇤ 0 0
0 0 ⇤ 0
0 0 0 ⇤

3

775

2

664

⇤ ⇤ 0 0
⇤ ⇤ ⇤ 0
0 ⇤ ⇤ ⇤
0 0 ⇤ ⇤

3

775

2

664

⇤ ⇤ ⇤ 0
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤

3

775

t = �1 t = �2 t = �3

S =
1

z
� 1

z4
H2

C4C3C2C1

� 1

z2
� 1

z3

2

664

⇤ 0 0 0
0 ⇤ 0 0
0 0 ⇤ 0
0 0 0 ⇤

3

775

2

664

⇤ ⇤ 0 0
⇤ ⇤ ⇤ 0
0 ⇤ ⇤ ⇤
0 0 ⇤ ⇤

3

775

2

664

⇤ ⇤ ⇤ 0
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤

3

775

t = �1 t = �2 t = �3

S =
1

z
� 1

z4
H2

⇤
⇤

⇤

⇤

a13 =
1

z

2

664

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775� 1

z2

2

664

0 0 ⇤ 0
0 0 0 0
⇤ 0 0 0
0 0 0 0

3

775� 1

z3

2

664

0 0 0 ⇤
0 0 0 0
0 0 0 0
⇤ 0 0 0

3

775

⇤
⇤

⇤

⇤



Special case of group norm with overlap [Jacob-Obozinski-Vert] 

 

  
 

 

The Graph Enhancement “Norm” 
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||x||A = min
x1,x2

||x1||2 + ||x2||2
subject toP

xi = x

supp(xi) ⇢ supp(ai)

Convex hull of 
 low dimensional unit disks 

 

A = {[⇤, ⇤, 0], [0, ⇤, ⇤]}



Communication Delay Co-Design 
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Theorem [N.M. CDC ‘13, TCNS ’14] 
Solving 
 
 
 
 
yields a “simple” SC and QI communication graph 
satisfying a priori performance bounds.  
 
Proof is a synthesis of results from Lamperski & Doyle ’12; 
Rotkowitz, Cogill & Lall ’10; and Chandrasekaran et al. ’12. 
 

minimizeQ kQkA
s.t. N(Q)2 �N2

c  �2

Centralized 
norm 

Designed 
norm 

Tuning  
param 



Communication Delay Co-Design 

400 

420 

440 

460 

480 

500 

520 

540 

560 

7 11 28 

Closed Loop Norm vs. # Links 

1 2 3 4

8 7 6 5

Base 

1 2 3 4

8 7 6 5

Augmented 

1 2 3 4

8 7 6 5

Centralized 
(infeasible) 

150 



Actuator Regularization 
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K

z w

y u

Pzu

Pyu

Pzw

Pyw

minimizeQkPzw + PzuQPywk
s.t. Q stable & causal

Goal 
 Choose which actuators we need 

 
Approach 

 Assume B is block-diagonal. 
  
  

 
 
 
 
 
 



Actuator Regularization 
152 

K

z w

y u

Pzu

Pyu

Pzw

Pyw

minimizeQkPzw + PzuQPywk
s.t. Q stable & causal

Goal 
 Choose which actuators we need 

 
Approach 

 Assume B is block-diagonal. 
  
 Then each block-row of Q corresponds to an actuator. 

 
 
 
 
 
 
 



Actuator Regularization 
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K

z w

y u

Pzu

Pyu

Pzw

Pyw

minimizeQkPzw + PzuQPywk
s.t. Q stable & causal

Goal 
 Choose which actuators we need 

 
Approach 

 Assume B is block-diagonal. 
  
 Then each block-row of Q corresponds to an actuator. 

 
 Atoms are controllers with one non-zero block-row. 

 
 Leads to “group norm without overlap” 

 
 
 
 
 
 
 



Other Application Areas 
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Sparse static feedback design 
 A scalable formulation for engineering combination therapies for 
evolutionary dynamics of disease, Jonsson, Rantzer, Murray, ACC ‘14 
 Sparsity-promoting optimal control for a class of distributed systems, 
Fardad, Lin & Jovanovic ACC ‘11 
 Design of optimal sparse feedback gains via the alternating direction 
method of multipliers, Lin, Fardad & Jovanovic TAC ’13 

 
Sparse consensus 

 On identifying sparse representations of consensus networks, Dhingra, 
Lin, Fardad, and Jovanovic, IFAC DENCS ’13 
 Fast linear iterations for distributed averaging, Xiao, Boyd SCL ‘04 

 
Sparse synchronization 

 Design of optimal sparse interconnection graphs for synchronization of 
oscillator networks, Fardad, Lin, and Jovanovic, TAC ‘13 (Submitted) 

 
 
 
 
 



Networked Control Systems 
•  Single plant/controller: connections with information theory 
•  Approaches for extending to distributed control 

 
Varying Delays 

•  Recent progress 
 
Distributed System Identification 

•  Known structure 
•  Unknown structure 

Control Architecture Design 
 
Emphasize Connections to Optimization & Statistics 
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Roadmap for 2nd  Part 



•  Regularization incredibly successful in model/system identification 
•  Basis pursuit [e.g. Donoho, Candes-Romberg-Tao, Tropp] 
•  Matrix completion [e.g. Candes-Recht, Recht-Fazel-Parrilo] 
•  Statistical regression [e.g. Wainwright, Ravikumar] 
•  System identification [e.g. Shah et al., Ljung] 

•  Common theme: exploit structure and “restricted well-posedness” to 
solve hard problems using convex methods. 

 
 

Regularization: A Success Story 
156 

= = 

ill-posed 
on full support 

well-posed  
on restricted support 



Inference/reconstruction 
•  Minimum restricted gains, null space conditions (Gordon’s escape 

through a mesh, Vershynin, Chadrasekaran et al., Tropp) 
•  Gives exact reconstruction conditions for no noise 
•  Estimation bounds for noisy case (no structure) 

 
 

Regularization in Inference/Model Selection 
157 

y = Ax

⇤(+✏)

null(A)

x

⇤

D(x⇤)



Inference/reconstruction 
•  Minimum restricted gains, null space conditions (Gordon’s escape 

through a mesh, Vershynin, Chadrasekaran et al., Tropp) 
•  Gives exact reconstruction conditions for no noise 
•  Estimation bounds for noisy case (no structure) 

Primal/Dual Certificates 
•  Use an “oracle”, and show that oracle solution solves 

original problem 
•  Still based on restricted gains 
•  Provides estimation bounds and structure 

 
 

Regularization in Inference/Model Selection 
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= = 

y = Ax

⇤(+✏)

null(A)

x

⇤

D(x⇤)



Regularization for Design 
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Regularized 
Distributed Control 

Model/System 
Identification 

Priors “Base” controller 
structure 

Simple structure 

Structure Need to design 
subspace 

Need to identify 
subspace 

Computation Convex optimization Convex optimization 

Cost Closed-loop 
performance 

Estimation/
prediction error 

Design 
Product 

Optimal controller 
and control 
architecture 

Optimal estimate 
and/or predictor  

minimize
x

kC(x, y)k+ �kxkA



Regularization for Design 
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So far: 
 
Principled algorithmic connections 

•  Illustrated with co-design of communication 
topologies well suited to distributed control 

Our goal now: 
 
Theoretical connections 

•  Define and provide co-design approximation 
guarantees  



How do we measure success? 
 

For estimation/identification 
 measured in terms of estimation and/or predictive power 

 
For design  

measured in terms of structure and approximation quality 

To make things concrete, consider square loss and group norm 
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minimizev
1
2ky � LEG(v)k2F + �kvkG

Performance 
Simplicity Open loop system 



The Group Norm 
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����

����
G
=

����

����+

����

����+

����

����+

����

����

= max

⇢����

���� ,
����

���� ,
����

���� ,
����

����

�����

����
G,1

With dual norm 

v1

v1

v1

v2 v2

v2 v2v1

v3
v3

v3
v3

v4

v4

v4

v4



Focus on Structure 
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✓supp supp gsupp gsupp=

Recover a subset of the structure Recover full structure 

G-support accurateEG-support accurate



Accurate Approximations  
164 

y = LEG(v⇤) + ✏

minimizev
1
2ky � LEG(v)k2F + �kvkG

Assume:  
 
Sparse nominal controller Nominal closed loop 

Self-incoherence: minimum gain of L on G⇤ � ↵

Corss-incoherence: maximum gain of L from (G⇤
)

? ! G⇤  �

Total Incoherence 

�
↵  ⌫



Suppose previous assumptions hold, and kE+
G L+✏kG,1  (� 1)�

for some 1   < 2
(⌫+1) .

Then

1. The solution v̂ is EG-support accurate, and

2. kv̂ � v⇤kG,1  �
�

↵

�
.

Support Accurate Approximations  
165 

Theorem [N.M. and V. Chandrasekaran, CDC ‘14]  
 
 
 
 
 
 
 
Corollary 
If kv⇤gk > �

�

↵

�
for all g 2 G⇤

. Then v̂ is G-support accurate.

only recover dominant  
control components 

Closed loop performance 
affects approximation error 



Suppose previous assumptions hold, and kE+
G L+✏kG,1  (� 1)�

for some 1   < 2
(⌫+1) .

Then

1. The solution v̂ is EG-support accurate, and

2. kv̂ � v⇤kG,1  �
�

↵

�
.

Support Accurate Approximations  
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Theorem [N.M. and V. Chandrasekaran, CDC ‘14]  
 
 
 
 
 
 
 
Corollary 
If kv⇤gk > �

�

↵

�
for all g 2 G⇤

. Then v̂ is G-support accurate.

only recover dominant  
control components 

Closed loop performance 
affects approximation error 

And which controller components 
 we are able to identify 



Support Accurate Approximations  
167 

In co-design problems, closed loop norm plays the role of 
estimation noise in identification problems 

 
 

 
 
 
 
 
 
 



Support Accurate Approximations  
168 

In co-design problems, closed loop norm plays the role of 
estimation noise in identification problems 

 
 

Within each class of k-sparse controllers 
the controller leading to best performance is 
easiest to identify via convex programming 

 
 
 
 
 
 
 



Actuator Regularization 
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K

z w

y u

Pzu

Pyu

Pzw

Pyw

minimizeQkPzw + PzuQPywk
s.t. Q stable & causal

Goal 
 Choose which actuators we need 

 
Approach 

 Under mild assumptions 
each row of Q corresponds to  
an actuator 

 
To make finite dimensional, set a horizon T and order N 

 
 
 
 
 
 

Performance 
Simplicity 

minimizev
1
2ky � LEG(v)k2F + �kvkG

y = LEG(v⇤) + ✏
Sparse nominal controller Nominal closed loop 



Actuator Regularization: Sample Path 
170 

G-support accurate

T =20, N=3, #inputs = 10, #outputs = 10, #states = 10  

0.5 1 1.50

1

2

3

4

5

6

7

8

9

10

 λ

N
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f a
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e 
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Incoherence Assumptions 
171 

Are these realistic? 
 



Incoherence Assumptions 
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Are these realistic? 
Do not have good theory yet 

 
 
 



Incoherence Assumptions 
173 

Are these realistic? 
Do not have good theory yet 

 
Structure & Stability Help 

Banded matrices, Spatially decaying impulse responses, 
etc. 
 
 



Incoherence Assumptions 
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Are these realistic? 
Do not have good theory yet 

 
Structure & Stability Help 

Banded matrices, Spatially decaying impulse responses, 
Toeplitz “sensing” matrices, etc. 

 
Randomization Helps 

Homogenous systems a simplifying assumption 
 
 



Incoherence Assumptions 
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Are these realistic? 
Do not have good theory yet 

 
Structure & Stability Help 

Banded matrices, Spatially decaying impulse responses, 
Toeplitz “sensing” matrices, etc. 

 
Randomization Helps 

Homogenous systems a simplifying assumption 
 

Overly conservative? 
Gains restricted to cones instead of subspaces? 



Networked Control Systems 
•  Single plant/controller: connections with information theory 
•  Approaches for extending to distributed control 

 
Varying Delays 

•  Recent progress 
 
Distributed System Identification 

•  Known structure 
•  Unknown structure 

Control Architecture Design 
 
Emphasize Connections to Optimization & Statistics 
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Roadmap for 2nd  Part 



Networked Control Systems & Varying Delays 
•  Connections with information theory 
•  Assume channels manifest themselves as varying delays 

 
Distributed System Identification & Control 
Architecture Design 

•  When nothing is hidden, not too tough 
•  Hidden variables lead to de-convolution problems: we have 

good convex methods 

Control Architecture Design 
•  Inherently combinatorial problem can be addressed using ideas 

from structured identification 
•  Deeper theoretical connections: estimation noise = closed loop 
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Recap of 2nd  Part 



Integration 
•  Layering as optimization decomposition, Chiang, Low, 

Calderbank & Doyle ‘07 

 
Adapt our expectations 

•  Results that are not scalable to implement: fundamental limits 
•  Identify new metrics that lead to scalable architectures that 

approximate these fundamental limits 

Combine control, optimization and statistics 
•  All different sides of the same coin (simplex?) 
•  Principled theory for analysis and design of large-scale systems 

no longer out of our reach 
•  An exciting time to be in CDS + CMS! 
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Going Forward 



We will post slides and reference list on workshop 
website and at 

http://www.cds.caltech.edu/~nmatni 
 
 

Questions?  
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Thank you!!! 


