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Application Areas that Need(ed) our Help

Optimal power flow (OPF)

 Non-convex, possibly large scale
optimization

Software Defined Networking (SDN)
Active control of smart grid
Automated highway systems

* All huge scale

« All need real time distributed (optimal)
control

* Non-convex
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Application Areas that Need(ed) our Help

In general, these problems are non-convex and
not scalable...



Use Structure to Relax

In general, these problems are non-convex and
not scalable...

General

Hard problems

Main Theme of 1st Part:
Use Structure to Relax
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Use Structure to Relax

In general, these problems are non-convex and
not scalable...

General - Structured
takes
Hard problems - Easy problems

Main Theme of 1st Part:
Use Structure to Relax
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Roadmap for 15t Part
DC OPF

« Connections to positive systems

« Connections to Sum of Squares Programming & Polynomial
Optimization

Distributed Optimal Control

« Why it's hard: Witsenhausen
« How can we make it tractable: Quadratic Invariance
« How can we make it scalable: Localizable Systems

Setup for 2" Part

Break
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Case Study: DC OPF

S
@

Kirchoff gives

I Y12 + Y14 —Y12 0 —14 Vi
Io| —Y21 Y21 + Yo3 + Y214 —Y23 —Y24 Vs
Is| 0 —132 Y32 0 V3
L4 ] | Ya — Y42 0 ya1 +yaz| | V4]

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011
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Case Study: DC OPF
The DC OPF problem is

L N
minimize )., I;V;

15,V
subject to I =YV (a)
Vil < Py, VPn <V, < Vmax (D)
yie(Vi = V3)* < Ly (c)

for all j, k=1,..., N

(a) Kirchoff’'s law
(b) Node power and voltage constraints
(c) Line constraints

Indefinite Quadratic Objectives and Constraints - Non-Convex

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011
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Case Study: DC OPF

The DC OPF problem is of the form

maximize x' Mpx

subject to  x ! Mix > by,
for k=1,..., K

Indefinite Quadratic Objectives and Constraints - Non-Convex

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011
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Case Study: DC OPF

The DC OPF problem is of the form

maximize x' Mpx

subject to  x ! Mix > by,
for k=1,..., K

Indefinite Quadratic Objectives and Constraints - Non-Convex
In general, NP-Hard

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011
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Case Study: DC OPF

The DC OPF problem is of the form

maximize x' Mpx

subject to  x ! Mix > by,
for k=1,..., K

Indefinite Quadratic Objectives and Constraints - Non-Convex
In general, NP-Hard

A little bit of algebra shows that the M, are Metzler
This case is NOT general

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011
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Case Study: DC OPF

The DC OPF problem is of the form

maximize
€T

subject to

maximize
X >0

subject to

LETM()ZC

ZCTMkCIJZbk
for k=1,..., K

TrMoX

TrM X > by _

for k=1... . Kk Still non-convex
rank(X) =1

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011
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Case Study: DC OPF

The DC OPF problem is of the form

maximize x' Mpx
XT

subject to x ' Mix > by,
for k=1,..., K

maximize TrMyX
X0 Convex!

subject to TrMpX > by But are we solving the

fork=1,.... K same problem?
ra —

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011
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Case Study: DC OPF

The DC OPF problem is of the form

maximize TrMyX
X >0

subject to TrMpX > by
fork=1,... . K
Ta =

We are! Relaxation exact because of Metzler
constraints

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011
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Case Study: DC OPF

The DC OPF problem is of the form

maximize TrMyX
X >0

subject to TrMpX > by
fork=1,... . K
Ta =

We are! Relaxation exact because of Metzler
constraints

Let X = (z;;) be any positive semi-definite matrix satisfying constraints.

0

Let x = (\/331'7;). Then (ZCZCT)M = Xii; but (QZZUT)ij = \/LiidLyjj 2 X,LJ
Then " Mz > TrM. X because M} are Metzler.

Liq
mz’j

IN TV
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Aside: Positive Systems Theory
D ical t
ynamical system S A
Suppose A is Metzler. Then:
x(()) = R_|_ — Q?(t) - R+\V/t Z 0

How does this help? Lyapunov/Storage functions can be

linear! , -
Al <O A"P+PA<0 A'z<0

[ | A

BN

V(x) = mkax(xk/ék) V(x) =x"Px V(x) =2"x

Theory: Tanaka &Langbort, 2012, Rantzer 2012, 2013,
Biomed Applicatons: Jonsson, Matni & Murray, 2013, 2014, Jonsson, Rantzer & Murray 2013

.
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Aside: Duality and Relaxations

Lagrangian of original problem:

L(z, M) = x' Myx+ 22{21 Ai (z" Myx — by,)
= K b +aT (Mo + K AkMk) z
Dual: o .
mlilljrz%lze — > g Akbi
subject to My + Z?Zl A M. <0
Dual of dual:

maximize TrMyX
X >0

subject to TrMpX > by
fork=1,... . K



Aside: SOS Optimization

Polynomial optimization = polynomial non-negativity

max p(z) = min~y s.t. v —p(z) > 0

Problem: testing polynomial non-negativity NP-hard in
general.

Solution: check weaker sufficient condition

If p(z) = q(x)* then p(z) >0

24
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Aside: SOS Optimization

Computational test for SOS is a semi-definite program.

For simplicity, fix d=1. Then

B T "1
L1 L1

plx)=| . Q | . | is SOS if and only if @ > 0
_CU']'L_ _$n_

Coefficients of p(x) impose affine constraints on Q.
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Aside: SOS Optimization

Constrained polynomial optimization
max p(x) s.t. g;(x) >0

Relax to

min~y s.t. ¥ —p(x) = so(z) + )_; si(x)gi(z)
so(x), sqi(x) are SOS(2d)

Get smaller and smaller upper bounds by letting d increase
and including more “polynomial Lagrange multipliers”.

So how does the DC OPF problem relate to this?
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Aside: SOS Optimization

SOS relaxation of original problem:

miny s.t. vy —z' Moz = so(x) + Y, sk(z) (' Mz — by)
T
sk(r) = [1] Qk [1], Qr = 0

X X

Expand RHS and equate coefficients

v =Q — i, Q}tbr, Q7 =0 for all j # 1.
For k£ > 1, QZj:Oforalli,j#l

_ 12n+1,2:n41 K 11
— My = @y + 2 g1 Qi Mk



Aside: SOS Optimization

SOS relaxation of original problem:

. . . K
minimize Q' — >, _, Qi bk
Qr >0,Q~0

subject to Zle Qi My + My = —-Q

28



Aside: SOS Optimization

SOS relaxation of original problem:

. . . K
minimize Q' — >, _, Qi bk
Qr >0,Q~0

subject to Zle Qi My + My = —-Q

minimize —Y ", Qi bk
Q' >0,Q=0

subject to Zi{zl Qi My + My <0

29
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Aside: SOS Optimization

SOS relaxation of original problem:

L K
minimize Q' — >, _, Qi bk
Q' >0,Q=0

subject to Zle Qi My + My = —-Q

minimize —Y ", Qi bk
Q' >0,Q=0

subject to Zle Q,lcle + My <0

This is the dual of our original problem!

Quadratic optimization with Metzler matrices is SOS(2)
exact.



31

DC OPF: Summary

Optimal power flow (OPF)

e Convex Relaxations are exact for DC
power flow

 Go see Steven Low’s talk on Thursday for
AC power and scalability

Solution from OPF problem provides reference
trajectory for system to track.

Future smart grid will need active control
Large scale - Distributed Architecture
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Roadmap for 15t Part
DC OPF

« Connections to positive systems

« Connections to Sum of Squares Programming & Polynomial
Optimization

Distributed Optimal Control

« Why it's hard: Witsenhausen
« How can we make it tractable: Quadratic Invariance
« How can we make it scalable: Localizable Systems

Setup for 29 Part

Break
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Distributed Control

Large scale systems not amenable to centralized
control

Idea: restrict information each controller has access to

Positives: control laws are local, and hence scalable to
implement.

Negatives: in general non-convex. Witsenhausen.



34

Witsenhausen Counter-Example

IEONN(O 00) -

1 -+ i)
iy L >-| »
L C’] Uq @’ Co—us
~ N(0,1)

min {k°E [u7] + ]E (23] }
Comms problem masquerading as a control problem

Roughly, C, needs to tell C, (via x, = u, + X, ) what x, was
— C,'s only goal is to signal through the plant as efficiently as possible
— Reliable communication through noisy channel - coding (i.e. non-linear)

Demystifying the Witsenhausen Counterexample, Grover & Sahai ‘10
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Distributed Control

Witsenhausen shows that distributed control is non-convex in
general

What structure do we need to regain convexity?

Witsenhausen hard because of comms aspect. Need to remove
this incentive to signal.

Quadratic Invariance (Rotkowitz & Lall ‘06), Partial Nestedness
(Ho & Chu 72), Funnel Causality (Bahmieh & Voulgaris '03),
Poset Causality (Shah & Parrilo “12)
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Distributed Control

Witsenhausen shows that distributed control is non-convex in
general

What structure do we need to regain convexity?

Witsenhausen hard because of comms aspect. Need to remove
this incentive to signal.

Quadratic Invariance (Rotkowitz & Lall ‘06), Partial Nestedness
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Classical Optimal Control Theory

regulated

output (fdisturbance
\) Z

<—Pszzu <_w

measured
waPyu © control

"IN we’ input

_>K

minimizeKHIPZw + P K (I — PyuK)_lf’MH
s.t. K causal
K(I — P,,K)™ " stable

closed loop map from
disturbance - reg. output
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Classical Optimal Control Theory

regulated
output
measured wa Pyu j

output
\) y

|

K

/disturbance

control

U / input

minimizeg || Py + Py

K(I = Py )

Pyuwl|

s.t. K Causg%l/k
[K(T — P, K) | stable Feedback

IS non-convex
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Classical Optimal Control Theory

regulated

output (fdisturbance
\) Z

<—Pszzu <_w

measured
waPyu © control

"IN we’ input

K

|

minimizeq || Py + Pau®@Pyuw || C -
s.t. () stable & Causal:} onvexin @
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Distributed Optimal Control Theory

Many decision agents leads to information asymmetry

® 0 0 -0

ActlSense$ ActlSensei ActlSense$ ActlSensei

B B By B

Manifests as subspace constraints on K in optimal control
problem.

minimizex || Py + Pou K(I — Py K) 7' Py |
s.t. K causal
K(I — P, K)~" stable Distributed
K €S| - constraint
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Distributed Optimal Control Theory

Many decision agents leads to information asymmetry

|
o O O *x

® 0 0 -0

ActlSense$

Q<—>Q<—>& 0

S O % O

ActlSensei ActlSensei

ActlSensei

B B By B

Manifests as subspace constraints on K in optimal control
problem.

O ¥ OO

0
0
0
* |

OO%%

| © % % %

-

) ¥ % ¥

0
0
*
*

%%%O
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Distributed Optimal Control Theory

Many decision agents leads to information asymmetry

® 0 0 0O

ActlSense$ ActlSensei ActlSense$ ActlSensei

B o B R

Manifests as subspace constraints on K in optimal control
problem.

°© o o o

0

S =

* % X O

* X% O O

0
0
*

* X X X




Quadratic Invariance

A constraint set S'is Ql under P, if

KP,KecS§, VK €§

If Sis Qlunder P,, then K ¢ Sifand only if Q € S
If we have QI, model matching problem becomes
minimizeq || Py + Pou@Pywl|

s.t. (@ stable & causal
QeSS

Convex in Q!

How does this relate to our intuition about signaling?.:

43



Quadratic Invariance for Delay Patterns

Qlif&onlyif Tc <Tx+Ts+Tp
(Rotkowitz, Cogill & Lall “10)

Tc: communication delay
T'4: actuation delay

Tal |15 Is| |14 Ts: sensing delay

T'p: propagation delay

No incentive to “signal through the plant”

44

44
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Distributed Optimal Control Theory

regulated

output (fdisturbance
\)Z‘_Pzwpzu W
mgﬁtspuurted Pywbyur control
\ Y U / input
— K

minimizeq || Piw + Pou@Pyu |
s.t. (@ stable & causal

|Q€S<\

Distributed constraint



Distributed Optimal Control Theory

Outline two recent results in H2 (LQG) distributed control:

1) two player nested information structures (Lessard &
Lall “12)

2) strongly connected communication graphs
(Lamperski & Doyle ‘13)

To reduce to finite dimensional solution:
exploit structure to find centralized sub-problems
+ some other stuff

Other approaches : poset causal systems, finite subspace
approximations, SDP based solutions

46
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Two Player Nested Structure

thzwpzuhw

_)K

Player 1 measures y, and chooses u,
Player 2 measures y,, y, and chooses u,

Lower block triangular structure
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Two Player Nested Structure

How can we exploit lower block triangular structure
to reduce to centralized problems?

Sweep stabilization issues, etc. under the rug —
see Lessard & Lall TAC 14 for details

mll’lgnlze HPzw —'_ PZ’UJQP’U/UJH%'[Q

subject to () stable and lower

Player 1 measures y, and chooses u,
Player 2 measures y,, y, and chooses u,
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Two Player Nested Structure

How can we exploit lower block triangular structure
to reduce to centralized problems?

[gg Q022] = E1QuE| +E2 Q12 Q| = [gg] E! + E2QxnE,)

~—

Centralized!!!
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Two Player Nested Structure

How can we exploit lower block triangular structure
to reduce to centralized problems?

[gg QO22] = E1QuE| +E2 Q12 Q| = [gg] B! + EyQy0FE,
Centralized!!!

Fix Q,, and solve \

n[gnigliz]e |(Pow + PouwE1Q11 B Puw) + PouEa [Q12 Qa2] Puwll7,,
12 22

subject to [ng ng} stable

To get optimal [Qf@ Q;é;}
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Two Player Nested Structure

How can we exploit lower block triangular structure
to reduce to centralized problems?

[gg Q022] = E1QuE| +E2 Q12 Q| = [gg] E! + E2QxnE,)
: Centralized!!!
Fix Q,, and solve .y

minimize [(Pow + PoE2Qo2Ey Puyw) + Py [QH] E1TPuwH%12
[ {_{ Q%]H Q12

subject to [ H {JQ]H stable

Q’fl}

To get optimal {QTQ



Two Player Nested Structure

How can we exploit lower block triangular structure

to reduce to centralized problems?

By uniqueness of optimal solution

_Q* 0
Qopt — L

% 7
Q12 @3

Main idea: use structure to get centralized problems,
and then do some extra “stuff”

Generalizes to other nested topologies such as N-player chain

Q14

7
Q1

0
Q%

(Lessard et al. ‘14, Tanaka and Parrilo ‘14)



Strongly Connected Communication Graphs

How can we exploit strongly connected structure
to reduce to centralized problems?

G- G G G

ActlSensei ActlSensei ActlSense$ ActlSensei

SO O %

X ¥ % O
D
q>|'_‘
&
=




Strongly Connected Communication Graphs

How can we exploit strongly connected structure
to reduce to centralized problems?

S = Y @ N+1Rp
Q=VaoU

FIR filter V
Local action based

on partial information
i >
Current time -(N+1) Time in the past

ITR component U: global action
based on delayed global information

We can play the same game: rewrite Q and solve for U in terms of V



Strongly Connected Communication Graphs

How can we exploit strongly connected structure
to reduce to centralized problems?

Q=VaoU

FIR filter V
Local action based

on partial information
i >
Current time -(N+1) Time in the past

IIR component U: global action
based on delayed global information

minjmize ||Pow + PouV Puw + Peul Puulf3,

subject to U € ZN%”HQ

Delayed but centralized: can get analytic solution in terms of V.
Again some magic happens, and problem reduces to...
(Lamperski & Doyle '13 and ‘14)



Strongly Connected Communication Graphs

« Optimal controller has 2 regimes

FIR filter V* IIR component U*: glo.bal actio.n
Toeal aeton hased based on delayed global 1E{iorma£110n
U = QN — WLIP) L__ 94, (WL VWR )WR
>

on partial information TNFT

Current time -(N+1) Time in the past

After N+1 steps: each node has access to global delayed state.

Key feature: Finite impulse response (FIR) filter V* solves:

N

minimizey Z (TrG,L-(V) (Gi(V))T + 2TI’G@‘(V)TZ'T)
i=1

s.t. V. e,

56
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Distributed Control

Large scale systems not amenable to centralized
control

Idea: restrict information each controller has access to

Positives: control laws are local, and hence scalable to
implement.

Negatives: in general non-convex. Witsenhausen.
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Distributed Control

Large scale systems not amenable to centralized
control

Idea: restrict information each controller has access to

Positives: control laws are local, and hence scalable to
implement.

Negatives: in general non-convex. Witsenhausen.

Positives: with additional structure, regain convexity
and finite dimensionality.
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Distributed Control

Large scale systems not amenable to centralized
control

Idea: restrict information each controller has access to

Positives: control laws are local, and hence scalable to
implement.

Negatives: in general non-convex. Witsenhausen.

Positives: with additional structure, regain convexity
and finite dimensionality.

Negatives: had to give up scalability in the process.



Distributed Control

In all cases, optimal controller is as expensive to
compute as centralized counter part

and
Can be even more difficult to implement!

What structure do we need to impose to maintain
convexity and regain scalability?

60



Distributed Control

In all cases, optimal controller is as expensive to
compute as centralized counter part

and
Can be even more difficult to implement!

What structure do we need to impose to maintain
convexity and regain scalability?

LOCALIZABILITY
(Wang, M., You & Doyle ‘13, Wang, M., & Doyle ‘13)

61



Quadratic Invariance for Delay Patterns

Qlif&onlyif Tc <Tx+Ts+Tp
(Rotkowitz, Cogill & Lall “10)

Tc: communication delay
T'4: actuation delay

Tal |15 Is| |14 Ts: sensing delay

T'p: propagation delay

No incentive to “signal through the plant”

62

62



63

Localizability

Localizability requires T¢ + Té; +T¢ <Tp

Tc: communication delay
T'4: actuation delay

Is Is| |14 Ts: sensing delay

T'p: propagation delay

Get ahead of disturbance and cancel it out

63



64

Localizability

Localizing Control Scheme

* T

space

past present future

Get ahead of disturbance and cancel it out

64



Localizability

Spatio-temporal deadbeat control at each node

minimize f(x[0 : k], u[0 : k])

z[k], u[k]
subject to z[0] = e,
x[k + 1] = Azx[k] + Bulk]
xlk] € S,
ull : k] € Sy
z|T) =0

65
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Localizability

Spatio-temporal deadbeat control at each node

Hgl}l[il]l,rql;l[lkz]e f(x[0: k], ul0: k]) Favorite convex cost
subject to z[0] = e,

x[k + 1] = Azx[k] + Bulk]

xlk] € S,

ull : k] € Sy

z|T) =0

66
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Localizability

Spatio-temporal deadbeat control at each node

Halcl[il]l,rzl;,l[lkz]e f(x[0: k], ul0: k]) Favorite convex cost
subject to fL’:O] — € Initial disturbance
x[k + 1] = Azx[k] + Bulk]
xlk] € S,
ull : k] € Sy
z|T) =0

67
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Localizability

Spatio-temporal deadbeat control at each node

Halcl[il]l,rzl;l[lkz]e f(x[0: k], ul0: k]) Favorite convex cost
subject to fL’:O] — € Initial disturbance
x|k + 1] = AZU[]C] + Bu[k] Dynamics
xlk] € S,
ull : k] € Sy
z|T) =0

68
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Localizability

Spatio-temporal deadbeat control at each node

Halcl[il]l,rf(l}[lkz]e f(x[0: k], ul0: k]) Favorite convex cost
subject to fL’:O] — € Initial disturbance
ZI?:k + 1] = AZU[]C] + Bu[k] Dynamics
r|k] € Sy Spatial constraints
ull : k] € Sy
z|T) =0

69



70

Localizability

Spatio-temporal deadbeat control at each node

Halcl[il]l,rf(l}[lkz]e f(x[0: k], ul0: k]) Favorite convex cost
subject to fL’:O] — € Initial disturbance
x:k + 1] = Ax|k] + Bulk] Dynamics
wzk'] € Sy Spatial constraints
u:1 k] € Sy Comm constraints
z|T) =0

70
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Localizability

Spatio-temporal deadbeat control at each node

Halcl[il]{rg[lkz]e f(x[0: k], ul0: k]) Favorite convex cost
subject to f;O] — € Initial disturbance
x|k + 1] = Ax|k] + Bulk] Dynamics
wk'] € Sy Spatial constraints
u:1 k] € Sy Comm constraints
z|T] =0 Temporal constraints

7
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Localizability

Spatio-temporal deadbeat control at each node

H;l[il]{rg[lkz]e f(x[0: k], ul0: k]) Favorite convex cost
subject to f;O] — € Initial disturbance
x|k + 1] = Ax|k] + Bulk] Dynamics
wk'] € Sy Spatial constraints
u:1 k] € Sy Comm constraints
z[T] =0 Temporal constraints

i(% Sz, Su r,u=70

72
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Localizability

Spatio-temporal deadbeat control at each node
lets us restrict to sub-models for design/implementation

minimize f(z'[0: k|, u*[0 : k]) Favorite convex cost
x? [k], u* [k]
subject to  z'[0] =e; | Initial disturbance
'’ k+ 1] = Az k] + B'ulk| Dynamics
x’ :k_ SR Spatial constraints
Uz_:l k] € S}, Comm constraints
o T]=0 Temporal constraints
(A", B°)

i(% Szr Su x,u =10

73
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Localizability

LQR cost splits along disturbances:
Completely Local Globally Optimal Solution

ml[g]lml[i]e |2[0 : B]||5 + [|[w*[0 : K]||5  LQR cost

subject to  z*|0] =¢€; | Initial disturbance
CCZ k41 = A'z|k] + B'ulk] Dynamics
3 k| € S | Spatial constraints
uzl k€S, Comm constraints
z'|[T] =0 Temporal constraints

74




Localizability
Extensions in the works for
Output feedback
and

Non-separable cost functions

(A", B")

i‘i Sz: Sy x,u =10

75
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Roadmap for 15t Part
DC OPF

« Connections to positive systems

« Connections to Sum of Squares Programming & Polynomial
Optimization

Distributed Optimal Control

« Why it's hard: Witsenhausen
« How can we make it tractable: Quadratic Invariance
« How can we make it scalable: Localizable Systems

Setup for 29 Part

Break
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Recap of 15t Part

“Easy” problems are convex and scalable
Interesting problems are large scale and non-convex

Solution: Exploit Structure to Relax

Indefinite QPs are hard in general
DC OPF is tractable because of Metzler structure

Distributed control is hard in general
Computationally tractable if we have Ql
Scalable if we have localizability



What have we swept under the rug?

Made lots of assumptions for distributed control
Can communicate with infinite bandwidth
Communication occurs with fixed delays

Have a known system model with known structure

Have a control architecture (actuation, sensing,
communication)

78



Roadmap for 2" Part

Networked Control Systems
« Single plant/controller: connections with information theory
 Approaches for extending to distributed control

Varying Delays

« Recent progress

Distributed System Identification
 Known structure
 Unknown structure

Control Architecture Design

79



Roadmap for 2" Part

Networked Control Systems
« Single plant/controller: connections with information theory
 Approaches for extending to distributed control

Varying Delays

« Recent progress

Distributed System Identification
« Known structure
« Unknown structure

Control Architecture Design

Emphasize Connections to Optimization & Statistics
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Networked Control Systems

Classical control system

>  Plant
o)
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Networked Control Systems

Classical control system

>  Plant
o)
$ y

-<

S
o bandwidth




Networked Control Systems

Networked control system

—>  Plant

Nab S

Adding realistic channels leads to
interplay between information and control theory

83
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—> Plant
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Networked Control Systems

Stabilization well understood

Channel Capacity > Plant “instability”

Plant ”instability”: Entropy H = Z| A >11082 A;

—> Plant

C, C

—

Examples
Channel Type Condition Reference
Limited data rate R R>H Nair & Evans ‘04
O Braslavsky,
SNR constrained AWGN > Z Re); Middleton &
log, e NRon0 Freudenberg '07

Noisy and quantized

Anytime reliability > H

Sahai and Mitter ‘06

Extensions to varying rates (Minero et. al ‘09, ‘13 )
Tree codes for achieving anytime reliability (Sukhavasi & Hassibi “13)




Networked Control Systems

Performance limits well understood
Martins and Dahleh ‘08

No channel gives us standard* Bode integral bound -

5 S 10g(S(w))dw > 377 max{0,log |A; (A)[}
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Networked Control Systems

Performance limits well understood
Martins and Dahleh ‘08

No channel gives us standard* Bode integral bound -

5 S 10g(S(w))dw > 377 max{0,log |A; (A)[}

27

Channel in the loop hurts us

—>

Plant

90

C,

Cc

y

L [T min{0,log(S(w))}dw > 327, max{0,log |\;(A)|} — C;

tlogs$,, ((0) Bode:

27
S1 835

NE S

New Inequality:
» S2<C, - Zmax{O, 10g|/1i (A)‘}
=1

S1+S83-52> Zn:max{(), log|A(A)}
i=1

Figure borrowed from Martins, and Dahleh TAC’08



Networked Control Systems

Achieving these limits
much less well understood

—> Plant
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Even for a single plant and controller
optimal control is difficult under noisy channels
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Networked Control Systems

—>{ Plant

Achieving these limits
much less well understood

C, C

—

Results exist for special cases

Even for a single plant and controller
optimal control is difficult under noisy channels

Modeling assumption: underlying channel manifests
as possibly unbounded and varying delays



Varying Delays

Two player LQR state feedback with varying delay
has explicit solution
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Varying Delays

Two player LQR state feedback with varying delay
has explicit solution

————— -_——
- S—-———
- -~
-
- ~o

&
~

Act/ Act/
Sense Sense

& v
< )‘\ >

if delay pattern leads to partially nested
information pattern throughout
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Varying Delays

Two player LQR state feedback with varying delay
has explicit solution

- -

Act/
Sense

< <
- >‘\

if delay pattern leads to partially nested
information pattern throughout

Dynamic Programming based solution
(M. & Doyle 13, M., Lamperski & Doyle ‘14)
Builds off of Lamperski & Doyle ‘12, Lamperski & Lessard ‘13



Varying Delays

Extensions to more general topologies?

Will require Dynamic Programming based solutions

98
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Varying Delays

Extensions to more general topologies?

Will require Dynamic Programming based solutions

These should be available soon, as sufficient statistics
are now well understood

“Sufficient statistics for linear control strategies in
decentralized systems with partial history sharing, Mahajan & Nayyar”, ‘14

“Sufficient statistics for team decision problems”, Wu (& Lall), ‘13
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Will require Dynamic Programming based solutions

These should be available soon, as sufficient statistics
are now well understood
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Varying Delays
Extensions to more general topologies?

Will require Dynamic Programming based solutions

These should be available soon, as sufficient statistics
are now well understood

“Sufficient statistics for linear control strategies in
decentralized systems with partial history sharing, Mahajan & Nayyar”, ‘14

“Sufficient statistics for team decision problems”, Wu (& Lall), ‘13

Unbounded delays?

Progress is promising on both the coding and control side
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Roadmap for 2" Part

Networked Control Systems
« Single plant/controller: connections with information theory
 Approaches for extending to distributed control

Varying Delays

« Recent progress

Distributed System Identification

« Known structure
« Unknown structure

Control Architecture Design

Emphasize Connections to Optimization & Statistics
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SysID with Known Structure

Traditional subspace methods destroy structure
A good algorithm leverages structure rather than ignoring it
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SysID with Known Structure

Traditional subspace methods destroy structure
A good algorithm leverages structure rather than ignoring it

We want convexity and scalability

Can we exploit known structure to get an algorithm that
IS local (scalable) and convex
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SysID with Known Structure

Quick Review of Basic SysID
Dynamics Input/output
t
Tit1 AZIJt + But Yt = ZT:O GTut_T
yy = Cuxy+ Duy Go=D,G, =CA™'B
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SysID with Known Structure

Quick Review of Basic SysID

Dynamics Input/output
t
Tir1 — AZBt + But Yt = ZTIO GTut_T
yy = Cuxy+ Duy Go=D,G, =CA™'B
Yy =|yn-m yn—u-1) - yn| G=|Go Gi - Gy
 UN-—M UN—(M—1) T UN |
UN—(M+1) UN—-M " UN-1
UN .My =

UN—(M+r) UN—(M4r—1) " "UN-—r
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SysID with Known Structure

Quick Review of Basic SysID

Dynamics Input/output
¢
Tir1 — AZEt + But Yt = ZTIO GTut_T
Yy = Cxy+ Duy Go=D,G, =CA™'B
Yy =|yn-m yn—u-1) - yn| G=|Go Gi - Gy
 UN_M UN—(M—-1) "t UN |
UN—(M+1) UN—-M " UN-1
UN .My =

UN—(M+r) UN—(M4r—1) " "UN—r

/0 identification: Yy = GUn prr = G = YNU):, Moy
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SysID with Known Structure

Quick Review of Basic Realization
Given G, ...,G,, build Hankel matrix:

G4 Gy . GT/Q
H(G) = G.2 Gs Gr/.2—l—1
_Gfr'/2 Gr/2—|—1 T G, i

If system order n is less than r then rank(H(G))=n, and
(A,C) can be identified via SVD, (B,D) can be identified via
least-squares.
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SysID with Known Structure
Combine to deal with process and observation noise

minimize rank(H(G))
subject to ||V — GUn a1, [|% < 62
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SysID with Known Structure
Combine to deal with process and observation noise

minimize rank(H(G))

subject to ||V — GUn a1, [|% < 62

Non-convex!
Relax to

N

minimize ||H(G)||+

subject to ||V — GUn arr||3 < 67

More on why this is the right thing to do later.
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SysID with Known Structure

Easy case: we can measure all interconnecting signals

High Order
Large Scale System

local ===pe=ppressszmeee=s o NIy
inputs sespusprescssssssansy o --‘-‘-_-_-‘?-3’@_';
measured "ttt 2" low order

interconnection signalg local system local
low order measurements

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14
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SysID with Known Structure

Easy case: we can measure all interconnecting signals

S High Order
minimize HH(G) H* Large Scale System

Go,...,Gr

subject to  [|[Yn — GUn pr.r||% < 62

Where now U consists of local
inputs and measured interconnecting signals.

Low-Rank and Low-Order Decompositions for Local System ldentification, M. & Rantzer ‘14
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SysID with Known Structure

Easy case: we can measure all interconnecting signals

S High Order
minimize HH(G) H* Large Scale System

Go,...,Gr

subject to  [|[Yn — GUn pr.r||% < 62
local = ok st e e o e D~ o
S PR EL O
measured * P " " " " " 1 low order
t t gnald local system local
low order measuremen ts

Where now U consists of local
inputs and measured interconnecting signals.

Need to get neighbors to inject excitation as well.

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14
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SysID with Known Structure

Tricky case: we miss some interconnecting signals

High Order
Large Scale System

1
I
1 .
I . hidden .
....... j- - .-+ |interconnection signals
l
local ===F=- L gt bl L DL e e
INPULS cmmtcedb e I . T _I_
b S R Ry RS >
_ measured ‘''¥rocrrrrre i | low-+high order
interconnection signalg local system local
low order measurements

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14
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SysID with Known Structure

Tricky case: we miss some interconnecting signals

High Order
Large Scale Syste

Yt = Zf—zo GTut—T + HTut—T

local == ‘-)
. .
1

NPULS s

asured
interconnection signald

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14



SysID with Known Structure

117

Tricky case: we miss some interconnecting signals

Yt =)

t

7=0 GTut—T -+ H’Tut—T
N A
Low-order High-order
but full rank but low rank

High Order
Large Scale Syste

local = 1-)

INPUtS s

-

r

3ot

asur .
interconnection signald

local systi

low order

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14
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SysID with Known Structure

Tricky case: we miss some interconnecting signals

High Order
Large Scale Syste

Yt = Zt GTut—T + HTut—T

7=0

A A
Low-order High-order
but full rank but low rank

Can we separate out the two components?

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14
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SysID with Known Structure

Tricky case: we miss some interconnecting signals

High Order
Large Scale Syste

Yt = Zf—zo GTut—T + HTut—T

A A
Low-order High-order
but full rank but low rank

Can we separate out the two components?

minimize rank(H(G))
{Gk}v{Hk}
subject to  ||Yy — (G + H)Un

rank(H (e’¥)) < k

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14
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SysID with Known Structure

Tricky case: we miss some interconnecting signals

High Order
Large Scale Syste

Yt = Zt GTut—T + HTut—T

7=0

Low-order High-order T
but full rank but low rank ool = 2D
measured
interconnection signald

Can we separate out the two components?

minimize ||H(G))||«
{Gr}{Hk}
subject to  ||Yy — (G + H)Un pr.||5 < 67

H(e’)|l« < k

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14
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SysID with Unknown Structure

Tricky case: we miss some interconnecting signals

_ ¢ High Ord
g =Y |Gy |+ [Hour i Onder
Low-order High-order I T S,
but full rank but low rank R cpppes

.
PULS . S

P
signalq local system
low order

Key feature:
exploiting structure to de-convolve response

minimize ||H(G))||«
{Gr}{Hr}
subject to  ||Yy — (G + H)Un pr.||5 < 67

H(e’)|l« < k

Low-Rank and Low-Order Decompositions for Local System Identification, M. & Rantzer ‘14
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Roadmap for 2" Part

Networked Control Systems
« Single plant/controller: connections with information theory
 Approaches for extending to distributed control

Varying Delays

« Recent progress

Distributed System Identification

« Known structure
« Unknown structure

Control Architecture Design

Emphasize Connections to Optimization & Statistics
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Latent Variables in Graphical Models

Will consider simpler case of identifying structure in
Graphical Models

X ~ N(0,%)
X,,; and Xj ° °

independent conditioned ©
on other vars 0 °
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Latent Variables in Graphical Models

Will consider simpler case of identifying structure in
Graphical Models

X ~N(0,%)

X,,; and X j ° e
independent conditioned ©
on other vars 0 °

L]

(271 =0

0
0
*
0
*

T
—
|
* O O O X
* O O * O
* X O O O
* KX KX K X
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Latent Variables in Graphical Models

Traditional estimation procedure

Collect samples X!, ... X%

Build sample covariance matrix
3 ZN i 0
2= % =1 (X)X )

For N>n, sample covariance is invertible.

Threshold >-! to identify structure



Latent Variables in Graphical Models

If we know model is sparse a priori
Collect samples X!, ... X%

Build sample covariance matrix
3 ZN i 0
2= % =1 (X)X )

For N<n, solve A
minimize TrXK — logdet K + A||K||g

" ~

Non-convex

126



Latent Variables in Graphical Models

If we know model is sparse a priori
Collect samples X!, ... X%

Build sample covariance matrix
3 ZN i 0
2= % =1 (X)X )

For N<n, solve A
minimize TrYXK — logdet K + A|K ||

" ~

convex
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Latent Variables in Graphical Models

If we know model is sparse a priori
Collect samples X!, ... X%

Build sample covariance matrix
3 ZN i 0
2= % =1 (X)X )

For N<n, solve A
minimize TrYXK — logdet K + A|K ||

" ~

convex

This works! Banerjee et al. ‘06, Ravikumar et al. ’08, ...

128
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Latent Variables in Graphical Models

But what if we miss a variable?

0
0
*
0
*

\g

I

—

|
*x O O O *
* O O *x O
* x O O O
A R R N
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Latent Variables in Graphical Models

But what if we miss a variable?

a n

L]



131

Latent Variables in Graphical Models

But what if we miss a variable?

* X X X
* X X X
*x X X X
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Latent Variables in Graphical Models

But what if we miss a variable?

o _ 20 EO,H]
YHO XHH

£

_ Ko Kon B0yt = |,
»)~l = K = ’ *
(%) [KH,O KHH] '

EE S S S
EE S SIS
E CHEE CHE
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Latent Variables in Graphical Models

But what if we miss a variable?

o _ [ 20 EO,H]
YHO XHH

Ko KO,H] o= .

»)~l = K =
(%) [KH,O Ko

L

(Zo) ' =Ko - KouK; KH,O

!

Sparse Low-rank

* K K X

X K KX X
EE S
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Latent Variables in Graphical Models

But what if we miss a variable?

o _ [ 20 EO,H]
YHO XHH

Ko KO,H] o= .

»)~l = K =
(%) [KH,O Ko

L

minimize Tt (S — L) — logdet(S — L) + A||S||1 + 7| L]

subject to S —L > 0,L >0

* K K X
* K K X

l% * X *I

This works! Chandrasekaran, Parrilo & Willsky ’12



Latent Variables in Graphical Models

But what if we miss a variable?

o _ [ 2.0 ZO,H]
YHO XHH

£

r r T ]

l% * X *I

Key feature:
exploiting structure to de-convolve response

v

minimize Tt (S — L) — logdet(S — L) + A||S||1 + 7| L]

subject to S —L > 0,L >0

This works! Chandrasekaran, Parrilo & Willsky ’12
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Roadmap for 2" Part

Networked Control Systems
« Single plant/controller: connections with information theory
 Approaches for extending to distributed control

Varying Delays

« Recent progress

Distributed System Identification

« Known structure
« Unknown structure

Control Architecture Design

Emphasize Connections to Optimization & Statistics
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Control Architecture Design

In SysID, induced structure in solution to identify
models

Can we induce structure to design control architectures?
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Control Architecture Design

In SysID, induced structure in solution to identify
models

Can we induce structure to design control architectures?
Communication Delay Design

&
Actuator placement
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Control Architecture Design

In SysID, induced structure in solution to identify
models

Can we induce structure to design control architectures?
Communication Delay Design

&
Actuator placement

Key Feature: Convex Co-Design Procedure
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Comm Delay Co-Design

N

minimizey Z (TI'G,L-(V) (Gi(V))T + 2TrGZ-(V)TZ-T)
i=1

s.t. V, € );

FIR filter V* IIR component U*: global action

N e [~ *based on delayed global ir_lf;ormaﬁilon
on partial information ,U = QN — WLPﬁHz(WL Vg )Wp;

I
Current time -(N+1) Time in the past

140
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Comm Delay Co-Design

N

minimizey Z (TrG,L-(V) (Gi(V))T + 2TrGZ-(V)TZ-T)
i=1

s.t. V, € );

Entire decentralized nature captured in V

141
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Comm Delay Co-Design

minimizey Z (Ter-(V) (GZ-(V))T + 2TrGZ-(V)TZ-T)

1=1
. 9

Entire decentralized nature captured in V

Remove constraints

142
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Comm Delay Co-Design

N
minimizey Y (TeGi(V) (Gi(V)) "+ 2TGs (V)T )+ V| 4

1=1
. 90

Entire decentralized nature captured in V
 Remove constraints

Add penalty to induce simple structure

143
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Comm Delay Co-Design

N
minimizey Z (TrG,L-(V) (G;(V) + 2TrGZ-(V)TZ-T) + AV || 4
i=1
. 9%
Entire decentralized nature captured in V
 Remove constraints
 Add penalty to induce simple structure
. What kind of structure in V?

« How to induce it in a convex way?

144
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Main Tool: Atomic Norms

| X |4 :=inf{t > 0| X &€ tconv(A)}

sparse vectors /

low-rank matrices

N
s
> <

“good” graphs

C@@ Ogb | > 777
g E )C [Chandrasekaran-Recht-Parrilo-Willsky]
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The Graph Enhancement “Norm”

Designed communication graph should

Satisfy tractability requirements (Ql)

Be strongly connected (SC)

Be simple

Yield acceptable closed loop performance

s wh -

Insight: Adjacency matrices of graphs satisfying 1 and 2 are closed
under addition.

Approach: Minimize structure inducing norm subject to performance
constraint
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The Graph Enhancement “Norm”

Start with base that is Ql and SC

Add shortcuts

Project out base
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The Graph Enhancement “Norm”

Special case of group norm with overlap [Jacob-Obozinski-Vert]

|z|[.4 = min ||z1||2 + [|z2]]2
L1,T2

subject to

Y xi=x

supp(z;) C supp(a;)
A = {[*,*,0], [0,x,x*]}

Convex hull of ;'
low dimensional unit disks 4

1
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Communication Delay Co-Design

Theorem [N.M. CDC 13, TCNS "14]

Solvi Designed Centralized
0 Vmg Norm norm
MINIMIZE)
S.t.
Tuning
yields a “simple” SC and QI communication graph param

satisfying a priori performance bounds.

Proof is a synthesis of results from Lamperski & Doyle '12;
Rotkowitz, Cogill & Lall '10; and Chandrasekaran et al. '12.
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540

520

500

480

460

440

420

400

Communication Delay Co-Design

Closed Loop Norm vs. # Links

Base

Augmented

11

Centralized
(infeasible)

28
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Actuator Regularization

151

Z<_Pszzu <_w
Goal PPy
Choose which actuators we need Y |u
— K
Approach minimizeq || Py + Pau®@Pyw||

Assume B is block-diagonal. s.t. Q stable & causal
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Actuator Regularization

< PZ’UJPZU, W
Goal <_waPyu<_
Choose which actuators we need Y |u
5 K
Approach minimizeQ HPZ’LU + quQwa H
Assume B is block-diagonal. s.t. Q stable & causal

Then each block-row of Q corresponds to an actuator.
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Actuator Regularization

< PZ’UJPZU, W
Goal <_waPyu<_
Choose which actuators we need Y |u
5 K
Approach minimizeQ HPZ’LU + quQwa H
Assume B is block-diagonal. s.t. Q stable & causal

Then each block-row of Q corresponds to an actuator.

Atoms are controllers with one non-zero block-row.

Leads to “group norm without overlap”
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Other Application Areas

Sparse static feedback design

A scalable formulation for engineering combination therapies for
evolutionary dynamics of disease, Jonsson, Rantzer, Murray, ACC ‘14

Sparsity-promoting optimal control for a class of distributed systems,
Fardad, Lin & Jovanovic ACC “11

Design of optimal sparse feedback gains via the alternating direction
method of multipliers, Lin, Fardad & Jovanovic TAC 13

Sparse consensus

On identifying sparse representations of consensus networks, Dhingra,
Lin, Fardad, and Jovanovic, IFAC DENCS ’13

Fast linear iterations for distributed averaging, Xiao, Boyd SCL ‘04

Sparse synchronization

Design of optimal sparse interconnection graphs for synchronization of
oscillator networks, Fardad, Lin, and Jovanovic, TAC ‘13 (Submitted)
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Roadmap for 2" Part

Networked Control Systems
« Single plant/controller: connections with information theory
 Approaches for extending to distributed control

Varying Delays

« Recent progress

Distributed System Identification

« Known structure
« Unknown structure

Control Architecture Design

Emphasize Connections to Optimization & Statistics
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Regularization: A Success Story

* Regularization incredibly successful in model/system identification
« Basis pursuit [e.g. Donoho, Candes-Romberg-Tao, Tropp]
* Matrix completion [e.g. Candes-Recht, Recht-Fazel-Parrilo]

» Statistical regression [e.g. Wainwright, Ravikumar]
« System identification [e.g. Shah et al., Ljung]

« Common theme: exploit structure and “restricted well-posedness” to

solve hard problems using convex methods.

ill-posed well-posed
on full support on restricted support




Regularization in Inference/Model Selection

Inference/reconstruction y = Ax*(+¢)

Minimum restricted gains, null space conditions (Gordon’s escape
through a mesh, Vershynin, Chadrasekaran et al., Tropp)

Gives exact reconstruction conditions for no noise ™
Estimation bounds for noisy case (no structure) null(A)

7
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Regularization in Inference/Model Selection

Inference/reconstruction y = Ax*(+¢)

« Minimum restricted gains, null space conditions (Gordon’s escape
through a mesh, Vershynin, Chadrasekaran et al., Tropp)

* Gives exact reconstruction conditions for no noise ™
» Estimation bounds for noisy case (no structure) null(A)
D(z™*)

Primal/Dual Certificates

« Use an “oracle”, and show that oracle solution solves
original problem

« Still based on restricted gains |:| = ='
* Provides estimation bounds and structure




Regularization for Design

minimize,,

1C(z, )|l + Allz]|a

Regularized
Distributed Control

Model/System
Identification

Priors “Base” controller Simple structure
structure
Structure Need to design Need to identify

subspace

subspace

Computation

Convex optimization

Convex optimization

Cost Closed-loop Estimation/
performance prediction error

Design Optimal controller Optimal estimate

Product and control and/or predictor

architecture

159
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Regularization for Design

So far:

Principled algorithmic connections

* lllustrated with co-design of communication
topologies well suited to distributed control

Our goal now:

Theoretical connections

« Define and provide co-design approximation
guarantees
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How do we measure success?

For estimation/identification
measured in terms of estimation and/or predictive power

For design
measured in terms of structure and approximation quality

To make things concrete, consider square loss and group norm

mmlmlzerHy LE;(v)||% + Mvllg

Performance \ A\

Open loop system Simplicity



The Group Norm

With dual norm

— max <

Gg,00

162




Focus on Structure

Eg-support accurate

SUppj C SUPP]

Recover a subset of the structure

163

G-support accurate

gsupp

a = gsupp

1

Recover full structure
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Accurate Approximations

minimizeU%Hy — LEG(v)||% + A|v|lg

Assume: Yy = ng v

o

Sparse nominal controller Nominal closed loop

Self-incoherence: minimum gain of £ on G* > «

Corss-incoherence: maximum gain of £ from (G*)* — G* < ~

T

Total Incoherence



165

Support Accurate Approximations

Theorem [N.M. and V. Chandrasekaran, CDC "14]

Suppose previous assumptions hold, and HE&L £+€J\‘g,oo < (k—1)A

2
for some 1 < g < D)

Closed loop performance

Then affects approximation error
1. The solution v is Eg-support accurate, and

2. [0 =v"lg,00 < A (%)

Corollary

If‘Hv;H > A (g)\ for all g € G*. Then v is G-support accurate.

A\ only recover dominant
control components
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Support Accurate Approximations

Theorem [N.M. and V. Chandrasekaran, CDC "14]

Suppose previous assumptions hold, and HE&L £+€J\‘g,oo < (k—1)A

2
for some 1 < g < D)

Th Closed loop performance
el affects approximation error

1. The solution v is Eg-support accurate, and

2. |0 = v*lg,0 <A (5)
And which controller components
le to identify

Corollary
If‘Hv;H > A (g)\ for all g € G*.

A\ only recover dominant
control components

hen v is G-support accurate.
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Support Accurate Approximations

In co-design problems, closed loop norm plays the role of
estimation noise in identification problems
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Support Accurate Approximations

In co-design problems, closed loop norm plays the role of
estimation noise in identification problems

Within each class of k-sparse controllers
the controller leading to best performance is
easiest to identify via convex programming
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Actuator Regularization

< PZ’UJPZU, W
Goal <_waPyu<_
Choose which actuators we need Y |u
5 K
Approach minimizeQ HPZ’LU + quQwa H
Under mild assumptions s.t. Q stable & causal

each row of Q corresponds to
an actuator

To make finite dimensional, set a horizon T and order N
« e 1 2
minimize,, = ||y — LEc (v + Allv
minimize, |y — L8 (0)|[F + Aol
Performance

y = LEg(v™) + ¢

Sparse nominal controller Nominal closed loop
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Actuator Regularization: Sample Path
T =20, N=3, #inputs = 10, #outputs = 10, #states = 10

108 g -

%

ar G-support accurate

Number of active groups
($)
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Incoherence Assumptions

Are these realistic?
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Are these realistic?
Do not have good theory yet
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Incoherence Assumptions

Are these realistic?
Do not have good theory yet

Structure & Stability Help

Banded matrices, Spatially decaying impulse responses,
etc.
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Incoherence Assumptions

Are these realistic?
Do not have good theory yet

Structure & Stability Help

Banded matrices, Spatially decaying impulse responses,
Toeplitz “sensing” matrices, etc.

Randomization Helps
Homogenous systems a simplifying assumption



175

Incoherence Assumptions

Are these realistic?
Do not have good theory yet

Structure & Stability Help

Banded matrices, Spatially decaying impulse responses,
Toeplitz “sensing” matrices, etc.

Randomization Helps
Homogenous systems a simplifying assumption

Overly conservative?
Gains restricted to cones instead of subspaces?
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Roadmap for 2" Part

Networked Control Systems
« Single plant/controller: connections with information theory
 Approaches for extending to distributed control

Varying Delays

« Recent progress

Distributed System Identification

« Known structure
« Unknown structure

Control Architecture Design

Emphasize Connections to Optimization & Statistics



Recap of 2@ Part

Networked Control Systems & Varying Delays
« Connections with information theory
 Assume channels manifest themselves as varying delays

Distributed System Identification & Control
Architecture Design
* When nothing is hidden, not too tough

 Hidden variables lead to de-convolution problems: we have
good convex methods

Control Architecture Design

* Inherently combinatorial problem can be addressed using ideas
from structured identification

« Deeper theoretical connections: estimation noise = closed loop
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Going Forward

Integration

Layering as optimization decomposition, Chiang, Low,
Calderbank & Doyle ‘07

Adapt our expectations

Results that are not scalable to implement: fundamental limits

|dentify new metrics that lead to scalable architectures that
approximate these fundamental limits

Combine control, optimization and statistics
« All different sides of the same coin (simplex?)

* Principled theory for analysis and design of large-scale systems
no longer out of our reach

* An exciting time to be in CDS + CMS!
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Thank youl!l!

We will post slides and reference list on workshop
website and at

http://www.cds.caltech.edu/~nmatni

Questions?



