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DeGroot Learning Models

DeGroot based models are tractable:

I DeGroot (1974)

I Tsitsiklis (1984)

I DeMarzo, Vayanos, Zwiebel (2003)

I Jadbabaie, Lin, Morse (2003)

I Acemoglu, Ozdaglar, ParandehGheibi (2010)

I Golub and Jackson (2010)

I Mossel and Tamuz (2013)

There is empirical evidence in favor of DeGroot models:

I Chandrasekhar, Larreguy, Xandri (2012)
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The Problem

Research question
How do the network structure and agents’ information structure
determine the extent of information aggregation?

Our model: an extension of DeGroot’s learning model with

I continuous flow of new information

I heterogenous observations

I asymptotic agreement with the Bayesian benchmark



Information aggregation and social learning
Challenges

I Information is often dispersed through out the network

I No central mechanisms for aggregation

I Interactions are local

I Related: Diffusion, gossip in

I face to face communications
I online social media

I examples:

I diffusion of micro finance programs (Banerjee et al. 2013)
I Coordination during popular uprisings ( Hassanpour (2012))
I decision making in organizations (Calvó-Armengol,

Beltran(’09))
I Making consumption decisions (Kotler (’86))
I Learning new agricultural techniques (Hagerstrand (’69),

Rogers (’83))



Model (agents and observations)
I {1, . . . , n}: finite set of agents

I Agents want to learn an underlying state θ ∈ Θ.

I t ∈ N: discrete time. ‘State” drawn at t = 0 according to
agents’ common prior.

I ωit ∈ S : private observations of agent i at time t

I Conditional on θ being realized, ωit ∼ `θi ∈ ∆S .

I `i = {`θi }θ∈Θ: agent i ’s signal structure: what is the
likelihood of ωit ∈ S , if θ is the truth?

Assumption (identifiability)

For all θ, θ̂ ∈ Θ, there exists i such that `θi 6= `θ̂i . Globally, there is
enough to discover the truth

Question:
Role of network and information structure?



Classical setting, no networks, What to expect?

Doob (1949), Blackwell and Dubins (1962)
Merging of opinions with increasing information: The belief of a
Bayesian agent i with absolutely continuous prior observing a
stream of signals will merge to the truth; i.e., she will learn the
likelihood function `i .

Geanakoplos and Polemarchakis (1982)
We can’t disagree forever: Two agents with a common prior
exchanging beliefs repeatedly will reach agreement; moreover, their
consensus belief will generically be as if they commonly knew each
others’ private information.

What happens in the networked case?



Classical setting, no networks, What to expect?

Doob (1949), Blackwell and Dubins (1962)
Merging of opinions with increasing information: The belief of a
Bayesian agent i with absolutely continuous prior observing a
stream of signals will merge to the truth; i.e., she will learn the
likelihood function `i .

Geanakoplos and Polemarchakis (1982)
We can’t disagree forever: Two agents with a common prior
exchanging beliefs repeatedly will reach agreement; moreover, their
consensus belief will generically be as if they commonly knew each
others’ private information.

What happens in the networked case?



The Bayesian Benchmark: Multi-agent setting

I Let X =

state︷︸︸︷
Θ ×

signals︷︸︸︷
Ω ×

network︷︸︸︷
Γ be the measurable space that

captures all uncertainty.

I Assume agents have a common prior over the X .

Theorem
Assume

(a) agents’ common prior has full support over X ;

(b) the realized network is strongly connected;

(c) the realized state is identifiable.

Then all agents learn the true state asymptotically almost surely;
i.e., µit −→ 1θ∗ for all i ∈ N .

Agents need to reason about too many things. Is there a simpler
behavioral model?
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Alternative?

What is a “reasonable” Non-Bayesian alternative?
Extension/modification of DeGroot learning model (Golub and
Jackson 2010) with these features:

I continuous flow of new information

I heterogenous stream of private observations

I asymptotic agreement with the Bayesian benchmark

I Implications of the rate analysis
I Axiomatic construction of non-Bayesian models



Model (learning rule)

I At t ∈ N agents also observe beliefs of their neighbors.

I µit ∈ ∆Θ: belief of agent i at t

I The update rule:

µit+1 = aiiBU(µit ;ωit+1)︸ ︷︷ ︸
i

+
∑
j 6=i

aij µjt︸︷︷︸
ii

.

I i: Bayesian posterior belief conditioned on private signal

I ii: beliefs of the neighbors

I Weights sum to one representing network connections.

I Is there a behavioral foundation for this model?

Research question
How do the network structure and agents’ information endowments
determine the extent of information aggregation?
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Model (social network)

I aij > 0 ⇔ Agent j is a neighbor of agent j .

i

j

aij

I A = [aij ] row-stochastic social interaction matrix

I weights can be time-varying and belief-dependent.

Assumption (strong connectivity)

There is a directed path from any agent to any other one (can be
generalized to switching graphs).

I Guarantees that information can flow from any agent to any
other.
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Asymptotic Learning

Proposition
If identifiability and strong connectivity assumptions are satisfied,

µit(·) −→ 1θ(·)

the rate is (up to first order)

r ≈ min
θ

min
θ̂ 6=θ

n∑
i=1

vihi (θ, θ̂) + h.o.t

I The learning process asymptotically coincides with Bayesian
learning

I Unlike Bayesian models, the model is tractable
I Rate is a convex combination of relative entropies hi (θ, θ̂)

with weights as eigenvector centrality vi .
I Consistent with empirical and theoretical observations in

Jackson (2013,2014)



Towards an axiomatic view

What should a reasonable model look like?
I If private signals are uninformative ⇒ beliefs updated as in

DeGroot ’74 (consensus)

I If a signal is evidence in favor of a state, the posterior belief
on that state should increase (increasing function of likelihood
ratio)

I Update should be separable in terms of private signal and an
aggregate of belief of neighbors

I All such updates converge, and have the same asymptotic rate
(up to first order)

I One such example: Average log beliefs of neighbors with log
private posterior

When signals are uninformative, model reverts to DeGroot.



Rate of Learning

Definition (total uncertainty)
TV distance between agents’ beliefs and the true distribution:

et =
1

2

n∑
i=1

‖µit(·)− 1θ(·)‖1

Definition (rate of learning)

λ = lim inft→∞
1
t |log et |

I λ depends on
I agents’ information endowments: relative entropy
I agents’ network position: eigenvector centrality
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Relative Entropy and Eigenvector Centrality

Definition (relative entropy)

Given θ̂ 6= θ,

hi (θ, θ̂) =
∑
s∈S

`θi (s) log
`θi (s)

`θ̂i (s)

I hi (θ, θ̂): information in favor of θ against θ̂ when θ is realized

I hi (θ, θ̂) = 0 ⇒ agent i cannot distinguish θ and θ̂

I larger hi (θ, θ̂) ⇒ easier to rule out θ̂ when θ is realized

Eigenvector Centrality

Definition (eigenvector centrality)
Given A, the eigenvector centrality of agent i is

vi =
n∑

j=1

vjaji



Uniform Informativeness Order

Definition (uniform informativeness)

`i �UI `
′
i

if

hi (θ, θ̂) ≥ h′i (θ, θ̂) for all θ, θ̂

I `i is more informative than `′i regardless of the realized state.

I a partial order on the set of signal structures

I weaker (more complete) than Blackwell’s informativeness



Under which allocation of signals is learning the fastest?

Proposition
Suppose

I agents’ signals are comparable with respect to �UI;

I `i �UI `j if and only if vi ≥ vj .

Then, no reallocation of signals increases the rate of learning.

I Positive assortative matching of centralities and signal
qualities maximizes the rate of learning.

I intuition: Irrespective of the realized state, the most
informative signals receive the most attention.



What if information endowments are incomparable?

I relative informativeness of agent i ’s signals for (θ, θ̂):

γi (θ, θ̂) = sup{β : hi (θ, θ̂) ≥ βhj(θ, θ̂) for all j 6= i}

I specialty of agent i :

Ei = {(θ, θ̂) : θ 6= θ̂ and γi (θ, θ̂) ≥ 1}

Definition (expertise)

I relative expertise: γi = min{γi (θ, θ̂) : (θ, θ̂) ∈ Ei}
I absolute expertise: εi = min{hi (θ, θ̂) : (θ, θ̂) ∈ Ei}



Experts

Proposition
Suppose that

I Ei 6= ∅ for all i ;

I εi ≥ εj if and only if vi ≤ vj .

Then, reallocations of signals do not increase the rate by more
than α(maxi εi )/(mini γi ).

I 1st condition: Agents are all experts.

I 2nd condition: The least central agents have the highest
absolute expertise.



Effect of Network topology?

Definition (regularity)

A �reg A′

if∑k
i=1 v[i ] ≤

∑k
i=1 v ′[i ]

m

v↓ FOSDa v ′↓

afirst-order stochastically dominates

�reg



Network Regularity and Learning

I Consider the rate under the best allocation: r∗.

Is r∗ higher for regular or irregular networks?

Proposition
Suppose agents’ signals are comparable with respect to �UI. Then,

A �reg A′ ⇒ r∗ ≤ r ′
∗

I The gap can grow unboundedly in large networks
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Network Regularity and Learning: An Example
I Θ = {θ0, θ1, . . . , θn}
I S = {Head,Tail}

`θi (s) :



Head Tail

θ0 1− π π
θ1 1− π π

...
...

θi π 1− π
...

...
θn 1− π π

I π > 1
2

Proposition

A �reg A′ ⇒ r∗ ≥ r ′
∗

I Ordering of networks is reversed with expert agents!

I The gap does not grow unboundedly.

⇒ Rates of learning in all large networks are similar.
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