# Robust and Adaptive Control Methods for Patient Response to Anesthesia

### **Carolyn Beck** University of Illinois Urbana-Champaign

Acknowledgments: Marc Bloom, M.D., Evgeny Kharisov, Matthew Ralph, Hui-Hung Lin

Funded by NSF

### Outline

- Introduction: the anesthesia control problem
- Modeling the Patient Response
- Robust and Adaptive Control Methods
- Control Simulation Results

### Problem Statement



### **Anesthesiologist:**

- Administers sedatives, analgesics, and neuromuscular blockades
- maintains ventilation parameters
- monitors cardiovascular and respiratory functions
- monitors blood chemistry:

blood-sugar levels, electrolyte concentrations, gas concentrations, coagulation parameters...

#### Goal: automate/optimize delivery and control of anesthesia



Goal: automate/optimize delivery and control of anesthesia



# Model-based feedback control requirements:

- means of sensing levels of sedation, analgesia, relaxation/neuromuscular blockade
- mathematical models of patient response

Goal: automate/optimize delivery and control of anesthesia

### Sensing signals:

- **Neuromuscular block:** *Surface electrode or piezoelectric measurements of response to electrical stimuli; typically uncoupled from sedation effects*
- Analgesia: No standardized or widely accepted means of measuring extent of pain relief; appears to be correlated with sedation
- Sedation: Spectral entropies (GE), wavelet analysis methods, Bispectral Index (BIS)

Derived from EEG using combination of higher order spectra and other indicators such as spectral edge and median frequencies; reveals synchrony of cortical brain signals characterizing unconsciousness (Covidien)

### Sensing signals:

- **Neuromuscular block:** *Surface electrode or piezoelectric measurements of response to electrical stimuli; typically uncoupled from sedation effects*
- Analgesia: No standardized or widely accepted means of measuring extent of pain relief; appears to be correlated with sedation
- Sedation: Spectral entropies (GE), wavelet analysis methods,
   Bispectral Index (BIS)

Derived from EEG using combination of higher order spectra and other indicators such as spectral edge and median frequencies; reveals synchrony of cortical brain signals characterizing unconsciousness (Covidien)

#### Model-based feedback control:

- Inputs: inhalational sedative
   Isoflurane and clinical stimuli
- Outputs: vital signs Heart Rate (HR) and Mean Arterial Pressure (MAP); BIS
- BIS values range from 0 to 100:
  - 100 completely alert
    - 60 moderately sedated
    - 40 deeply sedated



#### **Control Goals:**

- Track BIS reference trajectory signal while maintaining HR and MAP in healthy ranges
- *Must be adaptive and robust to patient variability*

# Patient Response Models

### Modeling Patient Response Compartment Models



- *Pharmacokinetic (PK) models:* Empirically derived linear ODEs
- *Pharmocodynamic (PD) models:* Static nonlinearity (e.g., sigmoidal function) fit to individual patient data
- Nonlinear SISO Grey-Box Models

### Modeling Patient Response Clinical trial data

#### **Input Data**

**Output Data** 





P. S. Glass, M. J. Bloom, et. al, Anesthesiology, 1997

### Modeling Patient Response

Linear Parameter Varying (LPV) Models: Subspace Identification used to construct models for individual patients from clinical data

- Piecewise-linear models
  - Awake and Sedated patient states
  - Low-order (3<sup>rd</sup> to 5<sup>th</sup> order per patient state)

$$x_i(k+1) = A_i x_i(k) + B_i u(k) + w(k)$$
  

$$y(k) = C_i x_i(k) + D_i u(k) + v(k)$$
  
where  $i = A$  (Alert), S (Sedated)

- LPV models
  - Gain-scheduled with respect to BIS value

$$A(\delta) = \frac{\delta(\delta-1)}{2}A_A + \frac{\delta+1}{2}A_S$$
  

$$B(\delta) = \frac{\delta(\delta-1)}{2}B_A + \frac{\delta+1}{2}B_S$$
  

$$C(\delta) = \frac{\delta(\delta-1)}{2}A_A + \frac{\delta+1}{2}A_S$$
  

$$With \ \delta(t) = 1 - \frac{2}{1 + \exp^{\eta * (70 - BIS(t))}}$$

### Modeling Patient Response LPV model simulation results



H. H. Lin, C. L. Beck, and M. J. Bloom, IEEE Trans. on Biomed. Eng., 2004.

### Modeling Patient Response

- $\mathcal{L}_1$ -Adaptive output feedback control design method based on standard transfer function models
  - Model structure

$$y(s) = G(s) \left( u(s) + d(s) \right)$$

- G(s) is LTI system transfer function; assumed strictly proper
- y(t) is measured BIS reading
- *u(t)* is input anesthesia flow *(percentage concentration of volume)*
- d(t) is time-varying disturbance (may be a function of y(t), assumed Lipshitz with constant L)
- State-Space Identification methods used to construct 4<sup>th</sup> order realizations {*A*, *B*, *C*}:  $G(s) = C(sI A)^{-1}B$

# LPV and $\mathcal{L}_1$ -Adaptive Control

### LPV Controller Synthesis



A. Packard, System and Control Letters, 1994; Apkarian and Gahinet, IEEE Trans. on Auto. Control, 1995; S. Shahruz and S. Behtash, J. of Math. Analysis and Applications, 1992

# $\mathcal{L}_1$ -Adaptive Control Methods Overview

- Goal: track a given reference input r(t) under modeling uncertainties
- Guarantee: asymptotic tracking with uniformly bounded system inputs and outputs
- *Prevents high frequency oscillations in control channel, and parameter drifts*

## $\mathcal{L}_1$ -Adaptive Control Methods Overview

- Design controller such that output y(t) tracks reference input r(t) according to some desired model M(s):  $y(s) \approx M(s)r(s)$
- Rewrite original input-output relationship using reference model:

$$y(s) = M(s) (u(s) + \sigma(s)), \text{ where}$$
  
$$\sigma(s) = \frac{(G(s) - M(s))u(s) + G(s)d(s)}{M(s)}$$

• Example: 
$$M(s) = \frac{m}{s+m}$$

### $\mathcal{L}_1$ -Adaptive Control Methods Design Architecture

Consider the closed-loop reference system:

$$y_{ref}(s) = M(s) \left( u_{ref}(s) + \sigma_{ref}(s) \right)$$
  

$$\sigma_{ref} = \frac{(G(s) - M(s))u_{ref} + G(s)d(s)}{M(s)}$$
  

$$u_{ref} = C(s)(r(s) - \sigma_{ref}(s)), \text{ with}$$
  

$$C(s) = \frac{w}{s+w}$$

- C(s) is low-pass filter used to attenuate high frequency uncertainty in control channel, and w is a design parameter
- r(s) is reference input

### $\mathcal{L}_1$ -Adaptive Control Methods Design Architecture

*Enforce the following stability condition:* 

Select C(s) and M(s) such that

$$H(s) = \frac{G(s)M(s)}{(C(s)G(s) + (1 - C(s))M(s))}$$

is BIBO stable, and

 $L \cdot \|H(s)(1 - C(s))\|_{\mathcal{L}_1} < 1$ 

Guarantees BIBO stability of closed-loop reference system

### $\mathcal{L}_1$ -Adaptive Control Methods Design Architecture

*The*  $\mathcal{L}_1$ -*Adaptive Controller consists of* 

- Output Predictor:

$$\frac{d\tilde{y}(t)}{dt} = -m\tilde{y}(t) + m\left(u(t) + \tilde{\sigma}(t)\right), \quad \tilde{y}(0) = 0$$

# - Parameter Adaptation Law: $\frac{d\tilde{\sigma}(t)}{dt} = \Gamma \cdot \Pi(\tilde{\sigma}(t), -mP(\tilde{y} - y)), \quad \tilde{\sigma}(0) = 0$

where  $\Pi(\cdot, \cdot)$  is least-squares type projection operator,  $\Gamma$  is adaptation rate, P > 0 is arbitrary, and  $|\tilde{\sigma}(t)| \leq \Delta$  is projection bound

- Feedback Control Law:  $u(s) = C(s)(r(s) - \tilde{\sigma}(s))$ 

### $\mathcal{L}_1$ -Adaptive Control Methods Performance Guarantees

It can be shown that for all  $t \ge 0$ , the  $\mathcal{L}_1$ -Adaptive Output Feedback Controller guarantees uniform boundedness of the tracking error, i.e.,

$$\|\tilde{y}(t) - y(t)\|_{\mathcal{L}_{\infty}} \le \frac{k}{\sqrt{\Gamma P}}$$

where k is a (computable) constant

# Design and Simulation Results

### LPV Design and Simulation Results BIS reference tracking



- Reference signal r(t) constructed to emulate original BIS profiles in clinical data
- BIS signal should track *r*(*t*)
- MAP within 60-110mmHg

### LPV Design and Simulation Results BIS reference tracking



H. H. Lin, C. L. Beck and M. J. Bloom, ACC, 2008

### $\mathcal{L}_1$ -Adaptive Design and Simulation Results BIS Tracking – No Disturbances



- initial settings: P = 1,  $\Delta = 100$ ,  $\Gamma = 50,000$
- filters:  $M(s) = \frac{1}{30s+1}$ ,  $C(s) = \frac{0.001}{s+0.001}$

### $\mathcal{L}_1$ -Adaptive Design and Simulation Results BIS Tracking – No Disturbances



- initial settings: P = 1,  $\Delta = 100$ ,  $\Gamma = 50,000$
- filters:  $M(s) = \frac{1}{30s+1}$ ,  $C(s) = \frac{0.002}{s+0.002}$

### $\mathcal{L}_1$ -Adaptive Design and Simulation Results BIS Tracking – Robustness to Patient Variability



Time t [min]

### $\mathcal{L}_1$ -Adaptive Design and Simulation Results BIS Tracking – Robustness to Patient Variability

Patient 1 controller on Patient 2, 3, 5, 6 and 7 models: *Performance Analysis* 

| Patient                                                                                                                                  | 1      | 2      | 3      | 5      | 6      | 7      |
|------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|
| Residual<br>Tracking<br>Error                                                                                                            | 0.0019 | 0.0062 | 0.0022 | 0.0016 | 0.0036 | 0.0064 |
|                                                                                                                                          |        |        |        |        |        |        |
| Patient                                                                                                                                  | 1      | 2      | 3      | 5      | 6      | 7      |
| Isoflurane<br>Use (liters)                                                                                                               | 2.40   | 2.86   | 2.23   | 2.40   | 2.29   | 2.15   |
| Previous control yielded residual tracking errors in the 5-10% range, and average total isoflurane consumption of approximately 3 liters |        |        |        |        |        |        |

### $\mathcal{L}_1$ -Adaptive Design and Simulation Results MIMO Control – BIS Tracking and MAP Performance with Disturbances



MAP required to be maintained within 60-110 mmHg range

M. Ralph, C. L. Beck and M. J. Bloom, ACC 2011; E. Kharisov, C. L. Beck and M. J. Bloom, SIAM Conference, 2013

### $\mathcal{L}_1$ - Adaptive Controller Designs



### Conclusions

- First applications of LPV and  $\mathcal{L}_1$ -Adaptive methods to anesthesia control
- Performance analysis includes intended patient and cross-patient evaluations

#### Implementation issues:

- Anesthesiologist controlled induction
- Enforce bounds on maximum drug concentrations "Hedging design"
- Predictor sampling
- $\mathcal{L}_1$ /LPV controllers with enable-disable control: "Human-Machine Interface"
- Multiple synergistic anesthetic agents

# Robust and Adaptive Control Methods for Patient Response to Anesthesia

### **Carolyn Beck** University of Illinois Urbana-Champaign

Acknowledgments: Marc Bloom, M.D., Evgeny Kharisov, Matthew Ralph, Hui-Hung Lin

Funded by NSF