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Problem Statement 
Anesthesia Control during Surgery 

Anesthesiologist: 
–  Administers sedatives, analgesics, 

and neuromuscular blockades 
–  maintains ventilation parameters 
–  monitors cardiovascular and 

respiratory functions 
–  monitors blood chemistry:  
blood-sugar levels, electrolyte 
concentrations, gas concentrations, 
coagulation parameters… 
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Goal: automate/optimize delivery and control of anesthesia 
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Problem Statement 
Anesthesia Control during Surgery 

Model-based feedback control 
requirements: 

–  means of sensing levels of sedation, 
analgesia, relaxation/neuromuscular 
blockade 

–  mathematical models of patient 
response 
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Problem Statement 
Anesthesia Control during Surgery 

Sensing signals: 
–  Neuromuscular block: Surface electrode or piezoelectric measurements of 

response to electrical stimuli; typically uncoupled from sedation effects 

–  Analgesia: No standardized or widely accepted means of measuring extent of 
pain relief; appears to be correlated with sedation 

–  Sedation: Spectral entropies (GE), wavelet analysis methods,    
    Bispectral Index (BIS) 

     

 
      
  

  

Derived from EEG using combination of higher order spectra and other indicators 
such as spectral edge and median frequencies; reveals synchrony of cortical brain 

signals characterizing unconsciousness (Covidien) 
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 Model-based feedback control: 

–  Inputs: inhalational sedative 
Isoflurane and clinical stimuli 

 
–  Outputs: vital signs Heart Rate (HR) 

and Mean Arterial Pressure (MAP); 
BIS 

–  BIS values range from 0 to 100: 
      100 – completely alert 
        60 – moderately sedated 
        40 – deeply sedated    

Problem Statement 
Anesthesia Control during Surgery 

patient 
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Control Goals:  
•  Track BIS reference trajectory signal    
while maintaining HR and MAP in 
healthy ranges  

•  Must be adaptive and robust to 
patient variability 
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Modeling Patient Response 
Compartment Models 
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•  Pharmacokinetic (PK) models: 
Empirically derived linear ODEs 

•  Pharmocodynamic (PD) models: 
Static nonlinearity (e.g., sigmoidal 
function) fit to individual patient 
data 

•  Nonlinear SISO Grey-Box Models 



Modeling Patient Response 
Clinical trial data 

 
Input Data                                                  Output Data 
 

                                     

 
 

Fig. 1. Isoflurane and Stimuli Inputs versus Time

Fig. 2. BIS, HR and MAP Outputs versus Time

datasets are acceptable, with an overall average normalized
residual error of approximately 29.5%. One example is
shown in Figure 3.

In the initial stage of the current adaptive control study,
we have constructed models and adaptive controllers for
SISO systems (isoflurane input to BIS output), for which
we evaluate and compare the modeling and controller per-
formance results. We specifically focus on evaluating inter-
patient adaptability of the controllers, and along these lines
include performance analyses of applying controllers de-
signed based on the model for one patient to other patient
models. The second stage of this study is identification
and adaptive control design evaluation for MISO systems,
namely, where external stimuli are included as disturbance
inputs, in addition to the controlled isoflurane input.

The final stage of this project involves the construction
of MIMO models and the application of multivariable L1-
adaptive techniques to these models [33]. This stage includes
evaluating vital sign responses (HR and MAP, for example)

Fig. 3. Patient 5 model validation results

as well as BIS responses. We note here that our focus is on
automated control of patients primarily in the sedated state.
Our assumption is that the attending physician performs the
initial induction from alert to the lightly-sedated state in order
to closely monitor initial patient response. Upon being lightly
sedated and observed for safety reasons, the patient is then
switched to the proposed automated control regime.

V. SIMULATION RESULTS: ANALYSIS AND DISCUSSION

We provide details on results found for two of six control
designs. Details for the remaining four control designs can
be found in [24].

A. Patient 1 L1-Adaptive Control

As noted above, models were constructed using subspace
identification methods on partitioned patient data (i.e., the
data was divided roughly in half for estimation and validation
purposes). A MATLAB m-file was created to identify values
for all parameters required for the system in (1), and for
the L1 adaptive controller given by (11), (12), and (14).
Simulink was then used to simulate the closed-loop systems.

Tracking, no disturbances: A fourth order system was
identified for Patient 1-sedated state with the transfer function
for the ISO/BIS model of Patient 1-sedated state given by

BIS
ISO

:
�1.359s3�1.362s2 +0.08081s�0.00635

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
. (16)

Note that we have assumed there is no time delay in the
system in our simulations. The transfer function for ISO to
BIS is assumed to be strictly proper. We selected P = 1,
D = 100 and G = 50000 as conservative initial parameter
values for the L1-adaptive design process. The L1-adaptive
controller given by (11), (12), and (14) is then applied to
track a given reference BIS trajectory, r(t). If for M(s) in
(3) we set m = 1/30 and we set w = 0.001 for C(s) in
(8), we can show that H(s) in (9) is strictly proper and
BIBO stable as required. These values were selected using a
combination of classical stability analysis methods and trial
and error. Based on the selected parameter values, we expect
the patient to reach the desired BIS level in approximately
two minutes, with very small error between y(t) and ŷ(t), and
no parameter drift. Simulation results for the L1 adaptive
controller applied to the dynamic response model for Patient
1 verify these expectations and can be seen in Figure 4.

Fig. 1. Isoflurane and Stimuli Inputs versus Time
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Fig. 2. BIS, HR and MAP Outputs versus Time

datasets are acceptable, with an overall average normalized
residual error of approximately 29.5%. One example is
shown in Figure 3.

In the initial stage of the current adaptive control study,
we have constructed models and adaptive controllers for
SISO systems (isoflurane input to BIS output), for which
we evaluate and compare the modeling and controller per-
formance results. We specifically focus on evaluating inter-
patient adaptability of the controllers, and along these lines
include performance analyses of applying controllers de-
signed based on the model for one patient to other patient
models. The second stage of this study is identification
and adaptive control design evaluation for MISO systems,
namely, where external stimuli are included as disturbance
inputs, in addition to the controlled isoflurane input.

The final stage of this project involves the construction
of MIMO models and the application of multivariable L1-
adaptive techniques to these models [33]. This stage includes
evaluating vital sign responses (HR and MAP, for example)

Fig. 3. Patient 5 model validation results

as well as BIS responses. We note here that our focus is on
automated control of patients primarily in the sedated state.
Our assumption is that the attending physician performs the
initial induction from alert to the lightly-sedated state in order
to closely monitor initial patient response. Upon being lightly
sedated and observed for safety reasons, the patient is then
switched to the proposed automated control regime.

V. SIMULATION RESULTS: ANALYSIS AND DISCUSSION

We provide details on results found for two of six control
designs. Details for the remaining four control designs can
be found in [24].

A. Patient 1 L1-Adaptive Control

As noted above, models were constructed using subspace
identification methods on partitioned patient data (i.e., the
data was divided roughly in half for estimation and validation
purposes). A MATLAB m-file was created to identify values
for all parameters required for the system in (1), and for
the L1 adaptive controller given by (11), (12), and (14).
Simulink was then used to simulate the closed-loop systems.

Tracking, no disturbances: A fourth order system was
identified for Patient 1-sedated state with the transfer function
for the ISO/BIS model of Patient 1-sedated state given by

BIS
ISO

:
�1.359s3�1.362s2 +0.08081s�0.00635

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
. (16)

Note that we have assumed there is no time delay in the
system in our simulations. The transfer function for ISO to
BIS is assumed to be strictly proper. We selected P = 1,
D = 100 and G = 50000 as conservative initial parameter
values for the L1-adaptive design process. The L1-adaptive
controller given by (11), (12), and (14) is then applied to
track a given reference BIS trajectory, r(t). If for M(s) in
(3) we set m = 1/30 and we set w = 0.001 for C(s) in
(8), we can show that H(s) in (9) is strictly proper and
BIBO stable as required. These values were selected using a
combination of classical stability analysis methods and trial
and error. Based on the selected parameter values, we expect
the patient to reach the desired BIS level in approximately
two minutes, with very small error between y(t) and ŷ(t), and
no parameter drift. Simulation results for the L1 adaptive
controller applied to the dynamic response model for Patient
1 verify these expectations and can be seen in Figure 4.

P. S. Glass, M. J. Bloom,  et. al, Anesthesiology, 1997 



Modeling Patient Response  
Linear Parameter Varying (LPV) Models: Subspace Identification used to 
construct models for individual patients from clinical data 
•  Piecewise-linear models  

–  Awake and Sedated patient states 
–  Low-order  (3rd to 5th order per patient state) 

 

•  LPV models 
–  Gain-scheduled with respect to BIS value 

xi(k + 1) = Aixi(k) +Biu(k) + w(k)
y(k) = Cixi(k) +Diu(k) + v(k)

where i = A (Alert), S (Sedated)

A(�) = �(��1)

2

AA + �+1

2

AS

B(�) = �(��1)

2

BA + �+1

2

BS

C(�) = �(��1)

2

AA + �+1

2

AS

with �(t) = 1� 2

1+exp

⌘⇤(70�BIS(t))

G(�(t),�) =
C(�) (�I �A(�))�1 B(�)



Modeling Patient Response 
LPV model simulation results 

Patient 1 data and models: 
 
 - Measured data 
 
 - Reduced order LPV model  
 
 - Compartment model  
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H. H. Lin, C. L. Beck, and M. J. Bloom,  IEEE Trans. on Biomed. Eng., 2004. 



Modeling Patient Response 

•     -Adaptive output feedback control design method based on 
standard transfer function models 
–  Model structure 

–  G(s) is LTI system transfer function; assumed strictly proper 
–  y(t) is measured BIS reading 
–  u(t) is input anesthesia flow (percentage concentration of volume) 
–  d(t) is time-varying disturbance (may be a function of y(t), assumed 

Lipshitz with constant L) 

 
•  State-Space Identification methods used to construct 4th order 

realizations {A, B, C}:   
 

L1

G(s) = C(sI �A)�1B

y(s) = G(s) (u(s) + d(s))



  
 
 

           LPV and      -Adaptive Control  L1



LPV Controller Synthesis 
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A. Packard, System and Control Letters, 1994; Apkarian and Gahinet, IEEE Trans. on Auto. Control, 1995;  S. Shahruz and S. Behtash, J. of Math. 
Analysis and Applications, 1992 



  -Adaptive Control Methods 
Overview  

 
•  Goal: track a given reference input r(t) under modeling uncertainties 

•  Guarantee: asymptotic tracking with uniformly bounded system 
inputs and outputs 

•  Prevents high frequency oscillations in control channel, and 
parameter drifts 

 

 
C. Cao and N. Hovakimyan, IEEE Trans. on Auto. Control, 2008 
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  -Adaptive Control Methods 
Overview  

 
•  Design controller such that output y(t) tracks reference input r(t) 

according to some desired model M(s):  

•  Rewrite original input-output relationship using reference model: 
 
  

•  Example: 

 
 

L1

y(s) ⇡ M(s)r(s)

y(s) = M(s) (u(s) + �(s)) , where

�(s) = (G(s)�M(s))u(s)+G(s)d(s)
M(s)

M(s) =
m

s+m



  -Adaptive Control Methods 
Design Architecture  

Consider the closed-loop reference system: 

–  C(s) is low-pass filter used to attenuate high frequency uncertainty in 
control channel, and      is a design parameter 

–  r(s) is reference input 

 
 

L1

yref (s) = M(s) (uref (s) + �ref (s))

�ref = (G(s)�M(s))uref+G(s)d(s)
M(s)

uref = C(s)(r(s)� �ref (s)), with

C(s) = w
s+w

w



 

Enforce the following stability condition: 
 

Select C(s) and M(s) such that 

is BIBO stable, and 

 
 
 
Guarantees BIBO stability of closed-loop reference system 
   
 
 
  

 
 

H(s) =
G(s)M(s)

(C(s)G(s) + (1� C(s))M(s)

L · ⇥H(s)(1� C(s))⇥L1 < 1

  -Adaptive Control Methods 
Design Architecture  

L1



The     -Adaptive Controller consists of 
–  Output Predictor: 

–  Parameter Adaptation Law: 

   
 where             is least-squares type projection operator,      is adaptation rate,  

P > 0 is arbitrary,   and                     is projection bound  

 
–  Feedback Control Law:  

 

 
 
 

L1

  -Adaptive Control Methods 
Design Architecture  

L1

dỹ(t)

dt
= �mỹ(t) +m (u(t) + �̃(t)) , ỹ(0) = 0

d�̃(t)

dt
= � ·⇧(�̃(t), �mP (ỹ � y)), �̃(0) = 0

u(s) = C(s)(r(s)� �̃(s))

⇧(·, ·) �
|�̃(t)|  �



  -Adaptive Control Methods 
Performance Guarantees  

It can be shown that for all          , the     -Adaptive Output 
Feedback Controller guarantees uniform boundedness of the 
tracking error, i.e.,  

   where k is a (computable) constant 

 
 

 
 
 

L1

L1t � 0

kỹ(t)� y(t)kL1  kp
�P



 Design and Simulation Results  
 



LPV Design and Simulation Results 
BIS reference tracking 

 Patient 1 LPV controller, patient 1 model: 
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•  Reference signal r(t) constructed 
to emulate original BIS profiles in 
clinical data 

•  BIS signal should track r(t) 

•  MAP within 60-110mmHg 



LPV Design and Simulation Results 
BIS reference tracking 

 Patient 1 model: Patient 1 LPV controller and Patient 3 LPV controller 
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H. H. Lin, C. L. Beck and M. J. Bloom, ACC, 2008 

	  



-Adaptive Design and Simulation Results 
BIS Tracking – No Disturbances 

 
Patient 1 adaptive output feedback control: 

       

                            

 

•  design parameters 

•  initial settings: 

•  filters:  

 

P = 1, ⇥ = 100, � = 50, 000
M(s) = 1

30s+1 , C(s) = 0.001
s+0.001

L1



-Adaptive Design and Simulation Results 
BIS Tracking – No Disturbances 

 
Patient 5 adaptive output feedback control: 

       

                            

 

•  design parameters 

•  initial settings: 

•  filters:  

 

P = 1, ⇥ = 100, � = 50, 000
M(s) = 1

30s+1 , C(s) = 0.002
s+0.002

L1



-Adaptive Design and Simulation Results 
BIS Tracking – Robustness to Patient Variability 

 
Patient 1 controller used on Patient 2, 3, 5, 6 and 7 models 
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-Adaptive Design and Simulation Results 
BIS Tracking – Robustness to Patient Variability 

 
Patient 1 controller on Patient 2, 3, 5, 6 and 7 models: Performance Analysis 

                                    
 
          
 
 
 
 

 

 

Previous control yielded residual tracking errors in the 5-10% range,  and 
average total isoflurane consumption of approximately 3 liters 

Patient 1 2 3 5 6 7 

Residual 
Tracking 
Error 

 
0.0019 

 
0.0062 

 
0.0022 

 
0.0016 

 
0.0036 

 
0.0064 

 

 

Patient 1 2 3 5 6 7 

Isoflurane 
Use (liters) 

2.40 2.86 2.23 2.40 2.29 2.15 

L1



-Adaptive Design and Simulation Results 
MIMO Control – BIS Tracking and MAP Performance 

with Disturbances 
 

Patient 1 Multivariable controller – 2 inputs, 2 outputs:   

                                    

 MAP required to be maintained within 60-110 mmHg range 

L1

M. Ralph, C. L. Beck and M. J. Bloom, ACC 2011; E. Kharisov, C. L. Beck and M. J. Bloom, SIAM Conference, 2013  



- Adaptive Controller Designs L1



Conclusions 

§  First applications of LPV and      -Adaptive methods to anesthesia control  
 
§  Performance analysis includes intended patient and cross-patient 

evaluations 
 
§  Implementation issues: 

§  Anesthesiologist controlled induction 
 
§  Enforce bounds on maximum drug concentrations – “Hedging design” 
 
§  Predictor sampling  
 
§      / LPV controllers with enable-disable control:“Human-Machine Interface” 

§  Multiple synergistic anesthetic agents 

 
 

L1

L1
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